Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0neqmnf Structured version   Unicode version

Theorem xrge0neqmnf 26290
Description: An extended nonnegative real cannot be minus infinity. (Contributed by Thierry Arnoux, 9-Jun-2017.)
Assertion
Ref Expression
xrge0neqmnf  |-  ( A  e.  ( 0 [,] +oo )  ->  A  =/= -oo )

Proof of Theorem xrge0neqmnf
StepHypRef Expression
1 mnflt0 11209 . . . . 5  |- -oo  <  0
2 mnfxr 11198 . . . . . 6  |- -oo  e.  RR*
3 0xr 9534 . . . . . 6  |-  0  e.  RR*
4 xrltnle 9547 . . . . . 6  |-  ( ( -oo  e.  RR*  /\  0  e.  RR* )  ->  ( -oo  <  0  <->  -.  0  <_ -oo ) )
52, 3, 4mp2an 672 . . . . 5  |-  ( -oo  <  0  <->  -.  0  <_ -oo )
61, 5mpbi 208 . . . 4  |-  -.  0  <_ -oo
7 simp2 989 . . . . 5  |-  ( ( -oo  e.  RR*  /\  0  <_ -oo  /\ -oo  <_ +oo )  ->  0  <_ -oo )
87con3i 135 . . . 4  |-  ( -.  0  <_ -oo  ->  -.  ( -oo  e.  RR*  /\  0  <_ -oo  /\ -oo  <_ +oo ) )
9 pnfxr 11196 . . . . . . 7  |- +oo  e.  RR*
10 elicc1 11448 . . . . . . 7  |-  ( ( 0  e.  RR*  /\ +oo  e.  RR* )  ->  ( -oo  e.  ( 0 [,] +oo )  <->  ( -oo  e.  RR* 
/\  0  <_ -oo  /\ -oo 
<_ +oo ) ) )
113, 9, 10mp2an 672 . . . . . 6  |-  ( -oo  e.  ( 0 [,] +oo ) 
<->  ( -oo  e.  RR*  /\  0  <_ -oo  /\ -oo  <_ +oo ) )
1211biimpi 194 . . . . 5  |-  ( -oo  e.  ( 0 [,] +oo )  ->  ( -oo  e.  RR* 
/\  0  <_ -oo  /\ -oo 
<_ +oo ) )
1312con3i 135 . . . 4  |-  ( -.  ( -oo  e.  RR*  /\  0  <_ -oo  /\ -oo  <_ +oo )  ->  -. -oo  e.  ( 0 [,] +oo ) )
146, 8, 13mp2b 10 . . 3  |-  -. -oo  e.  ( 0 [,] +oo )
15 nelneq 2568 . . 3  |-  ( ( A  e.  ( 0 [,] +oo )  /\  -. -oo  e.  ( 0 [,] +oo ) )  ->  -.  A  = -oo )
1614, 15mpan2 671 . 2  |-  ( A  e.  ( 0 [,] +oo )  ->  -.  A  = -oo )
1716neneqad 2652 1  |-  ( A  e.  ( 0 [,] +oo )  ->  A  =/= -oo )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2644   class class class wbr 4393  (class class class)co 6193   0cc0 9386   +oocpnf 9519   -oocmnf 9520   RR*cxr 9521    < clt 9522    <_ cle 9523   [,]cicc 11407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4514  ax-nul 4522  ax-pow 4571  ax-pr 4632  ax-un 6475  ax-cnex 9442  ax-resscn 9443  ax-1cn 9444  ax-icn 9445  ax-addcl 9446  ax-addrcl 9447  ax-mulcl 9448  ax-mulrcl 9449  ax-i2m1 9454  ax-1ne0 9455  ax-rnegex 9457  ax-rrecex 9458  ax-cnre 9459
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-rab 2804  df-v 3073  df-sbc 3288  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-nul 3739  df-if 3893  df-pw 3963  df-sn 3979  df-pr 3981  df-op 3985  df-uni 4193  df-br 4394  df-opab 4452  df-id 4737  df-xp 4947  df-rel 4948  df-cnv 4949  df-co 4950  df-dm 4951  df-iota 5482  df-fun 5521  df-fv 5527  df-ov 6196  df-oprab 6197  df-mpt2 6198  df-pnf 9524  df-mnf 9525  df-xr 9526  df-ltxr 9527  df-le 9528  df-icc 11411
This theorem is referenced by:  xrge0nre  26291  xrge0adddir  26293  xrge0npcan  26295  hasheuni  26672
  Copyright terms: Public domain W3C validator