Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0mulc1cn Structured version   Unicode version

Theorem xrge0mulc1cn 28389
Description: The operation multiplying a nonnegative real numbers by a nonnegative constant is continuous. (Contributed by Thierry Arnoux, 6-Jul-2017.)
Hypotheses
Ref Expression
xrge0mulc1cn.k  |-  J  =  ( (ordTop `  <_  )t  ( 0 [,] +oo )
)
xrge0mulc1cn.f  |-  F  =  ( x  e.  ( 0 [,] +oo )  |->  ( x xe C ) )
xrge0mulc1cn.c  |-  ( ph  ->  C  e.  ( 0 [,) +oo ) )
Assertion
Ref Expression
xrge0mulc1cn  |-  ( ph  ->  F  e.  ( J  Cn  J ) )
Distinct variable group:    x, C
Allowed substitution hints:    ph( x)    F( x)    J( x)

Proof of Theorem xrge0mulc1cn
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 xrge0mulc1cn.k . . . . . 6  |-  J  =  ( (ordTop `  <_  )t  ( 0 [,] +oo )
)
2 letopon 20001 . . . . . . 7  |-  (ordTop `  <_  )  e.  (TopOn `  RR* )
3 iccssxr 11663 . . . . . . 7  |-  ( 0 [,] +oo )  C_  RR*
4 resttopon 19957 . . . . . . 7  |-  ( ( (ordTop `  <_  )  e.  (TopOn `  RR* )  /\  ( 0 [,] +oo )  C_  RR* )  ->  (
(ordTop `  <_  )t  ( 0 [,] +oo ) )  e.  (TopOn `  (
0 [,] +oo )
) )
52, 3, 4mp2an 672 . . . . . 6  |-  ( (ordTop `  <_  )t  ( 0 [,] +oo ) )  e.  (TopOn `  ( 0 [,] +oo ) )
61, 5eqeltri 2488 . . . . 5  |-  J  e.  (TopOn `  ( 0 [,] +oo ) )
76a1i 11 . . . 4  |-  ( C  =  0  ->  J  e.  (TopOn `  ( 0 [,] +oo ) ) )
8 0e0iccpnf 11687 . . . . 5  |-  0  e.  ( 0 [,] +oo )
98a1i 11 . . . 4  |-  ( C  =  0  ->  0  e.  ( 0 [,] +oo ) )
10 simpl 457 . . . . . . . . 9  |-  ( ( C  =  0  /\  x  e.  ( 0 [,] +oo ) )  ->  C  =  0 )
1110oveq2d 6296 . . . . . . . 8  |-  ( ( C  =  0  /\  x  e.  ( 0 [,] +oo ) )  ->  ( x xe C )  =  ( x xe 0 ) )
12 simpr 461 . . . . . . . . . 10  |-  ( ( C  =  0  /\  x  e.  ( 0 [,] +oo ) )  ->  x  e.  ( 0 [,] +oo )
)
133, 12sseldi 3442 . . . . . . . . 9  |-  ( ( C  =  0  /\  x  e.  ( 0 [,] +oo ) )  ->  x  e.  RR* )
14 xmul01 11514 . . . . . . . . 9  |-  ( x  e.  RR*  ->  ( x xe 0 )  =  0 )
1513, 14syl 17 . . . . . . . 8  |-  ( ( C  =  0  /\  x  e.  ( 0 [,] +oo ) )  ->  ( x xe 0 )  =  0 )
1611, 15eqtrd 2445 . . . . . . 7  |-  ( ( C  =  0  /\  x  e.  ( 0 [,] +oo ) )  ->  ( x xe C )  =  0 )
1716mpteq2dva 4483 . . . . . 6  |-  ( C  =  0  ->  (
x  e.  ( 0 [,] +oo )  |->  ( x xe C ) )  =  ( x  e.  ( 0 [,] +oo )  |->  0 ) )
18 xrge0mulc1cn.f . . . . . 6  |-  F  =  ( x  e.  ( 0 [,] +oo )  |->  ( x xe C ) )
19 fconstmpt 4869 . . . . . 6  |-  ( ( 0 [,] +oo )  X.  { 0 } )  =  ( x  e.  ( 0 [,] +oo )  |->  0 )
2017, 18, 193eqtr4g 2470 . . . . 5  |-  ( C  =  0  ->  F  =  ( ( 0 [,] +oo )  X. 
{ 0 } ) )
21 c0ex 9622 . . . . . 6  |-  0  e.  _V
2221fconst2 6110 . . . . 5  |-  ( F : ( 0 [,] +oo ) --> { 0 }  <-> 
F  =  ( ( 0 [,] +oo )  X.  { 0 } ) )
2320, 22sylibr 214 . . . 4  |-  ( C  =  0  ->  F : ( 0 [,] +oo ) --> { 0 } )
24 cnconst 20080 . . . 4  |-  ( ( ( J  e.  (TopOn `  ( 0 [,] +oo ) )  /\  J  e.  (TopOn `  ( 0 [,] +oo ) ) )  /\  ( 0  e.  ( 0 [,] +oo )  /\  F : ( 0 [,] +oo ) --> { 0 } ) )  ->  F  e.  ( J  Cn  J
) )
257, 7, 9, 23, 24syl22anc 1233 . . 3  |-  ( C  =  0  ->  F  e.  ( J  Cn  J
) )
2625adantl 466 . 2  |-  ( (
ph  /\  C  = 
0 )  ->  F  e.  ( J  Cn  J
) )
27 eqid 2404 . . . . . . . . 9  |-  (ordTop `  <_  )  =  (ordTop `  <_  )
28 oveq1 6287 . . . . . . . . . 10  |-  ( x  =  y  ->  (
x xe C )  =  ( y xe C ) )
2928cbvmptv 4489 . . . . . . . . 9  |-  ( x  e.  RR*  |->  ( x xe C ) )  =  ( y  e.  RR*  |->  ( y xe C ) )
30 id 23 . . . . . . . . 9  |-  ( C  e.  RR+  ->  C  e.  RR+ )
3127, 29, 30xrmulc1cn 28378 . . . . . . . 8  |-  ( C  e.  RR+  ->  ( x  e.  RR*  |->  ( x xe C ) )  e.  ( (ordTop `  <_  )  Cn  (ordTop ` 
<_  ) ) )
32 letopuni 20003 . . . . . . . . 9  |-  RR*  =  U. (ordTop `  <_  )
3332cnrest 20081 . . . . . . . 8  |-  ( ( ( x  e.  RR*  |->  ( x xe C ) )  e.  ( (ordTop `  <_  )  Cn  (ordTop `  <_  ) )  /\  ( 0 [,] +oo )  C_  RR* )  ->  ( (
x  e.  RR*  |->  ( x xe C ) )  |`  ( 0 [,] +oo ) )  e.  ( ( (ordTop `  <_  )t  ( 0 [,] +oo ) )  Cn  (ordTop ` 
<_  ) ) )
3431, 3, 33sylancl 662 . . . . . . 7  |-  ( C  e.  RR+  ->  ( ( x  e.  RR*  |->  ( x xe C ) )  |`  ( 0 [,] +oo ) )  e.  ( ( (ordTop `  <_  )t  ( 0 [,] +oo ) )  Cn  (ordTop ` 
<_  ) ) )
35 resmpt 5145 . . . . . . . . 9  |-  ( ( 0 [,] +oo )  C_ 
RR*  ->  ( ( x  e.  RR*  |->  ( x xe C ) )  |`  ( 0 [,] +oo ) )  =  ( x  e.  ( 0 [,] +oo )  |->  ( x xe C ) ) )
363, 35ax-mp 5 . . . . . . . 8  |-  ( ( x  e.  RR*  |->  ( x xe C ) )  |`  ( 0 [,] +oo ) )  =  ( x  e.  ( 0 [,] +oo )  |->  ( x xe C ) )
3736, 18eqtr4i 2436 . . . . . . 7  |-  ( ( x  e.  RR*  |->  ( x xe C ) )  |`  ( 0 [,] +oo ) )  =  F
381eqcomi 2417 . . . . . . . 8  |-  ( (ordTop `  <_  )t  ( 0 [,] +oo ) )  =  J
3938oveq1i 6290 . . . . . . 7  |-  ( ( (ordTop `  <_  )t  ( 0 [,] +oo ) )  Cn  (ordTop `  <_  ) )  =  ( J  Cn  (ordTop `  <_  ) )
4034, 37, 393eltr3g 2508 . . . . . 6  |-  ( C  e.  RR+  ->  F  e.  ( J  Cn  (ordTop ` 
<_  ) ) )
412a1i 11 . . . . . . 7  |-  ( C  e.  RR+  ->  (ordTop `  <_  )  e.  (TopOn `  RR* ) )
42 simpr 461 . . . . . . . . . 10  |-  ( ( C  e.  RR+  /\  x  e.  ( 0 [,] +oo ) )  ->  x  e.  ( 0 [,] +oo ) )
43 ioorp 11658 . . . . . . . . . . . 12  |-  ( 0 (,) +oo )  = 
RR+
44 ioossicc 11666 . . . . . . . . . . . 12  |-  ( 0 (,) +oo )  C_  ( 0 [,] +oo )
4543, 44eqsstr3i 3475 . . . . . . . . . . 11  |-  RR+  C_  (
0 [,] +oo )
46 simpl 457 . . . . . . . . . . 11  |-  ( ( C  e.  RR+  /\  x  e.  ( 0 [,] +oo ) )  ->  C  e.  RR+ )
4745, 46sseldi 3442 . . . . . . . . . 10  |-  ( ( C  e.  RR+  /\  x  e.  ( 0 [,] +oo ) )  ->  C  e.  ( 0 [,] +oo ) )
48 ge0xmulcl 11691 . . . . . . . . . 10  |-  ( ( x  e.  ( 0 [,] +oo )  /\  C  e.  ( 0 [,] +oo ) )  ->  ( x xe C )  e.  ( 0 [,] +oo ) )
4942, 47, 48syl2anc 661 . . . . . . . . 9  |-  ( ( C  e.  RR+  /\  x  e.  ( 0 [,] +oo ) )  ->  (
x xe C )  e.  ( 0 [,] +oo ) )
5049, 18fmptd 6035 . . . . . . . 8  |-  ( C  e.  RR+  ->  F :
( 0 [,] +oo )
--> ( 0 [,] +oo ) )
51 frn 5722 . . . . . . . 8  |-  ( F : ( 0 [,] +oo ) --> ( 0 [,] +oo )  ->  ran  F  C_  ( 0 [,] +oo ) )
5250, 51syl 17 . . . . . . 7  |-  ( C  e.  RR+  ->  ran  F  C_  ( 0 [,] +oo ) )
533a1i 11 . . . . . . 7  |-  ( C  e.  RR+  ->  ( 0 [,] +oo )  C_  RR* )
54 cnrest2 20082 . . . . . . 7  |-  ( ( (ordTop `  <_  )  e.  (TopOn `  RR* )  /\  ran  F  C_  ( 0 [,] +oo )  /\  ( 0 [,] +oo )  C_  RR* )  ->  ( F  e.  ( J  Cn  (ordTop `  <_  ) )  <-> 
F  e.  ( J  Cn  ( (ordTop `  <_  )t  ( 0 [,] +oo ) ) ) ) )
5541, 52, 53, 54syl3anc 1232 . . . . . 6  |-  ( C  e.  RR+  ->  ( F  e.  ( J  Cn  (ordTop `  <_  ) )  <->  F  e.  ( J  Cn  ( (ordTop `  <_  )t  ( 0 [,] +oo ) ) ) ) )
5640, 55mpbid 212 . . . . 5  |-  ( C  e.  RR+  ->  F  e.  ( J  Cn  (
(ordTop `  <_  )t  ( 0 [,] +oo ) ) ) )
571oveq2i 6291 . . . . 5  |-  ( J  Cn  J )  =  ( J  Cn  (
(ordTop `  <_  )t  ( 0 [,] +oo ) ) )
5856, 57syl6eleqr 2503 . . . 4  |-  ( C  e.  RR+  ->  F  e.  ( J  Cn  J
) )
5958, 43eleq2s 2512 . . 3  |-  ( C  e.  ( 0 (,) +oo )  ->  F  e.  ( J  Cn  J
) )
6059adantl 466 . 2  |-  ( (
ph  /\  C  e.  ( 0 (,) +oo ) )  ->  F  e.  ( J  Cn  J
) )
61 xrge0mulc1cn.c . . 3  |-  ( ph  ->  C  e.  ( 0 [,) +oo ) )
62 0xr 9672 . . . 4  |-  0  e.  RR*
63 pnfxr 11376 . . . 4  |- +oo  e.  RR*
64 0ltpnf 11387 . . . 4  |-  0  < +oo
65 elicoelioo 28050 . . . 4  |-  ( ( 0  e.  RR*  /\ +oo  e.  RR*  /\  0  < +oo )  ->  ( C  e.  ( 0 [,) +oo )  <->  ( C  =  0  \/  C  e.  ( 0 (,) +oo ) ) ) )
6662, 63, 64, 65mp3an 1328 . . 3  |-  ( C  e.  ( 0 [,) +oo )  <->  ( C  =  0  \/  C  e.  ( 0 (,) +oo ) ) )
6761, 66sylib 198 . 2  |-  ( ph  ->  ( C  =  0  \/  C  e.  ( 0 (,) +oo )
) )
6826, 60, 67mpjaodan 789 1  |-  ( ph  ->  F  e.  ( J  Cn  J ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 186    \/ wo 368    /\ wa 369    = wceq 1407    e. wcel 1844    C_ wss 3416   {csn 3974   class class class wbr 4397    |-> cmpt 4455    X. cxp 4823   ran crn 4826    |` cres 4827   -->wf 5567   ` cfv 5571  (class class class)co 6280   0cc0 9524   +oocpnf 9657   RR*cxr 9659    < clt 9660    <_ cle 9661   RR+crp 11267   xecxmu 11372   (,)cioo 11584   [,)cico 11586   [,]cicc 11587   ↾t crest 15037  ordTopcordt 15115  TopOnctopon 19689    Cn ccn 20020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-8 1846  ax-9 1848  ax-10 1863  ax-11 1868  ax-12 1880  ax-13 2028  ax-ext 2382  ax-rep 4509  ax-sep 4519  ax-nul 4527  ax-pow 4574  ax-pr 4632  ax-un 6576  ax-cnex 9580  ax-resscn 9581  ax-1cn 9582  ax-icn 9583  ax-addcl 9584  ax-addrcl 9585  ax-mulcl 9586  ax-mulrcl 9587  ax-mulcom 9588  ax-addass 9589  ax-mulass 9590  ax-distr 9591  ax-i2m1 9592  ax-1ne0 9593  ax-1rid 9594  ax-rnegex 9595  ax-rrecex 9596  ax-cnre 9597  ax-pre-lttri 9598  ax-pre-lttrn 9599  ax-pre-ltadd 9600  ax-pre-mulgt0 9601
This theorem depends on definitions:  df-bi 187  df-or 370  df-an 371  df-3or 977  df-3an 978  df-tru 1410  df-ex 1636  df-nf 1640  df-sb 1766  df-eu 2244  df-mo 2245  df-clab 2390  df-cleq 2396  df-clel 2399  df-nfc 2554  df-ne 2602  df-nel 2603  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3063  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3741  df-if 3888  df-pw 3959  df-sn 3975  df-pr 3977  df-tp 3979  df-op 3981  df-uni 4194  df-int 4230  df-iun 4275  df-iin 4276  df-br 4398  df-opab 4456  df-mpt 4457  df-tr 4492  df-eprel 4736  df-id 4740  df-po 4746  df-so 4747  df-fr 4784  df-we 4786  df-xp 4831  df-rel 4832  df-cnv 4833  df-co 4834  df-dm 4835  df-rn 4836  df-res 4837  df-ima 4838  df-pred 5369  df-ord 5415  df-on 5416  df-lim 5417  df-suc 5418  df-iota 5535  df-fun 5573  df-fn 5574  df-f 5575  df-f1 5576  df-fo 5577  df-f1o 5578  df-fv 5579  df-isom 5580  df-riota 6242  df-ov 6283  df-oprab 6284  df-mpt2 6285  df-om 6686  df-1st 6786  df-2nd 6787  df-wrecs 7015  df-recs 7077  df-rdg 7115  df-1o 7169  df-oadd 7173  df-er 7350  df-map 7461  df-en 7557  df-dom 7558  df-sdom 7559  df-fin 7560  df-fi 7907  df-pnf 9662  df-mnf 9663  df-xr 9664  df-ltxr 9665  df-le 9666  df-sub 9845  df-neg 9846  df-div 10250  df-rp 11268  df-xneg 11373  df-xmul 11375  df-ioo 11588  df-ico 11590  df-icc 11591  df-rest 15039  df-topgen 15060  df-ordt 15117  df-ps 16156  df-tsr 16157  df-top 19693  df-bases 19695  df-topon 19696  df-cn 20023  df-cnp 20024
This theorem is referenced by:  esummulc1  28541
  Copyright terms: Public domain W3C validator