MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xralrple Structured version   Unicode version

Theorem xralrple 11276
Description: Show that  A is less than  B by showing that there is no positive bound on the difference. (Contributed by Mario Carneiro, 12-Jun-2014.)
Assertion
Ref Expression
xralrple  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  ( A  <_  B  <->  A. x  e.  RR+  A  <_  ( B  +  x )
) )
Distinct variable groups:    x, A    x, B

Proof of Theorem xralrple
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 rpge0 11104 . . . . . 6  |-  ( x  e.  RR+  ->  0  <_  x )
21adantl 466 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  x  e.  RR+ )  ->  0  <_  x
)
3 simplr 754 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  x  e.  RR+ )  ->  B  e.  RR )
4 rpre 11098 . . . . . . 7  |-  ( x  e.  RR+  ->  x  e.  RR )
54adantl 466 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  x  e.  RR+ )  ->  x  e.  RR )
63, 5addge01d 10028 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  x  e.  RR+ )  ->  ( 0  <_  x 
<->  B  <_  ( B  +  x ) ) )
72, 6mpbid 210 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  x  e.  RR+ )  ->  B  <_  ( B  +  x )
)
8 simpll 753 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  x  e.  RR+ )  ->  A  e.  RR* )
93rexrd 9534 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  x  e.  RR+ )  ->  B  e.  RR* )
103, 5readdcld 9514 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  x  e.  RR+ )  ->  ( B  +  x )  e.  RR )
1110rexrd 9534 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  x  e.  RR+ )  ->  ( B  +  x )  e.  RR* )
12 xrletr 11233 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( B  +  x )  e. 
RR* )  ->  (
( A  <_  B  /\  B  <_  ( B  +  x ) )  ->  A  <_  ( B  +  x )
) )
138, 9, 11, 12syl3anc 1219 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  x  e.  RR+ )  ->  ( ( A  <_  B  /\  B  <_  ( B  +  x
) )  ->  A  <_  ( B  +  x
) ) )
147, 13mpan2d 674 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  x  e.  RR+ )  ->  ( A  <_  B  ->  A  <_  ( B  +  x )
) )
1514ralrimdva 2902 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  ( A  <_  B  ->  A. x  e.  RR+  A  <_  ( B  +  x )
) )
16 rexr 9530 . . . . . . 7  |-  ( B  e.  RR  ->  B  e.  RR* )
1716adantl 466 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  B  e.  RR* )
18 simpl 457 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  A  e.  RR* )
19 qbtwnxr 11271 . . . . . . 7  |-  ( ( B  e.  RR*  /\  A  e.  RR*  /\  B  < 
A )  ->  E. y  e.  QQ  ( B  < 
y  /\  y  <  A ) )
20193expia 1190 . . . . . 6  |-  ( ( B  e.  RR*  /\  A  e.  RR* )  ->  ( B  <  A  ->  E. y  e.  QQ  ( B  < 
y  /\  y  <  A ) ) )
2117, 18, 20syl2anc 661 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  ( B  <  A  ->  E. y  e.  QQ  ( B  < 
y  /\  y  <  A ) ) )
22 simprrl 763 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( y  e.  QQ  /\  ( B  <  y  /\  y  <  A ) ) )  ->  B  <  y
)
23 simplr 754 . . . . . . . . . 10  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( y  e.  QQ  /\  ( B  <  y  /\  y  <  A ) ) )  ->  B  e.  RR )
24 qre 11059 . . . . . . . . . . 11  |-  ( y  e.  QQ  ->  y  e.  RR )
2524ad2antrl 727 . . . . . . . . . 10  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( y  e.  QQ  /\  ( B  <  y  /\  y  <  A ) ) )  ->  y  e.  RR )
26 difrp 11125 . . . . . . . . . 10  |-  ( ( B  e.  RR  /\  y  e.  RR )  ->  ( B  <  y  <->  ( y  -  B )  e.  RR+ ) )
2723, 25, 26syl2anc 661 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( y  e.  QQ  /\  ( B  <  y  /\  y  <  A ) ) )  ->  ( B  < 
y  <->  ( y  -  B )  e.  RR+ ) )
2822, 27mpbid 210 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( y  e.  QQ  /\  ( B  <  y  /\  y  <  A ) ) )  ->  ( y  -  B )  e.  RR+ )
29 simprrr 764 . . . . . . . . . 10  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( y  e.  QQ  /\  ( B  <  y  /\  y  <  A ) ) )  ->  y  <  A
)
3025rexrd 9534 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( y  e.  QQ  /\  ( B  <  y  /\  y  <  A ) ) )  ->  y  e.  RR* )
31 simpll 753 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( y  e.  QQ  /\  ( B  <  y  /\  y  <  A ) ) )  ->  A  e.  RR* )
32 xrltnle 9544 . . . . . . . . . . 11  |-  ( ( y  e.  RR*  /\  A  e.  RR* )  ->  (
y  <  A  <->  -.  A  <_  y ) )
3330, 31, 32syl2anc 661 . . . . . . . . . 10  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( y  e.  QQ  /\  ( B  <  y  /\  y  <  A ) ) )  ->  ( y  < 
A  <->  -.  A  <_  y ) )
3429, 33mpbid 210 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( y  e.  QQ  /\  ( B  <  y  /\  y  <  A ) ) )  ->  -.  A  <_  y )
3523recnd 9513 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( y  e.  QQ  /\  ( B  <  y  /\  y  <  A ) ) )  ->  B  e.  CC )
3625recnd 9513 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( y  e.  QQ  /\  ( B  <  y  /\  y  <  A ) ) )  ->  y  e.  CC )
3735, 36pncan3d 9823 . . . . . . . . . 10  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( y  e.  QQ  /\  ( B  <  y  /\  y  <  A ) ) )  ->  ( B  +  ( y  -  B
) )  =  y )
3837breq2d 4402 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( y  e.  QQ  /\  ( B  <  y  /\  y  <  A ) ) )  ->  ( A  <_ 
( B  +  ( y  -  B ) )  <->  A  <_  y ) )
3934, 38mtbird 301 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( y  e.  QQ  /\  ( B  <  y  /\  y  <  A ) ) )  ->  -.  A  <_  ( B  +  ( y  -  B ) ) )
40 oveq2 6198 . . . . . . . . . . 11  |-  ( x  =  ( y  -  B )  ->  ( B  +  x )  =  ( B  +  ( y  -  B
) ) )
4140breq2d 4402 . . . . . . . . . 10  |-  ( x  =  ( y  -  B )  ->  ( A  <_  ( B  +  x )  <->  A  <_  ( B  +  ( y  -  B ) ) ) )
4241notbid 294 . . . . . . . . 9  |-  ( x  =  ( y  -  B )  ->  ( -.  A  <_  ( B  +  x )  <->  -.  A  <_  ( B  +  ( y  -  B ) ) ) )
4342rspcev 3169 . . . . . . . 8  |-  ( ( ( y  -  B
)  e.  RR+  /\  -.  A  <_  ( B  +  ( y  -  B
) ) )  ->  E. x  e.  RR+  -.  A  <_  ( B  +  x
) )
4428, 39, 43syl2anc 661 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( y  e.  QQ  /\  ( B  <  y  /\  y  <  A ) ) )  ->  E. x  e.  RR+  -.  A  <_  ( B  +  x ) )
45 rexnal 2865 . . . . . . 7  |-  ( E. x  e.  RR+  -.  A  <_  ( B  +  x
)  <->  -.  A. x  e.  RR+  A  <_  ( B  +  x )
)
4644, 45sylib 196 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( y  e.  QQ  /\  ( B  <  y  /\  y  <  A ) ) )  ->  -.  A. x  e.  RR+  A  <_  ( B  +  x )
)
4746rexlimdvaa 2938 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  ( E. y  e.  QQ  ( B  <  y  /\  y  <  A )  ->  -.  A. x  e.  RR+  A  <_  ( B  +  x ) ) )
4821, 47syld 44 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  ( B  <  A  ->  -.  A. x  e.  RR+  A  <_ 
( B  +  x
) ) )
4948con2d 115 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  ( A. x  e.  RR+  A  <_ 
( B  +  x
)  ->  -.  B  <  A ) )
50 xrlenlt 9543 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <_  B  <->  -.  B  <  A ) )
5116, 50sylan2 474 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  ( A  <_  B  <->  -.  B  <  A ) )
5249, 51sylibrd 234 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  ( A. x  e.  RR+  A  <_ 
( B  +  x
)  ->  A  <_  B ) )
5315, 52impbid 191 1  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  ( A  <_  B  <->  A. x  e.  RR+  A  <_  ( B  +  x )
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758   A.wral 2795   E.wrex 2796   class class class wbr 4390  (class class class)co 6190   RRcr 9382   0cc0 9383    + caddc 9386   RR*cxr 9518    < clt 9519    <_ cle 9520    - cmin 9696   QQcq 11054   RR+crp 11092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4511  ax-nul 4519  ax-pow 4568  ax-pr 4629  ax-un 6472  ax-cnex 9439  ax-resscn 9440  ax-1cn 9441  ax-icn 9442  ax-addcl 9443  ax-addrcl 9444  ax-mulcl 9445  ax-mulrcl 9446  ax-mulcom 9447  ax-addass 9448  ax-mulass 9449  ax-distr 9450  ax-i2m1 9451  ax-1ne0 9452  ax-1rid 9453  ax-rnegex 9454  ax-rrecex 9455  ax-cnre 9456  ax-pre-lttri 9457  ax-pre-lttrn 9458  ax-pre-ltadd 9459  ax-pre-mulgt0 9460  ax-pre-sup 9461
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3070  df-sbc 3285  df-csb 3387  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-pss 3442  df-nul 3736  df-if 3890  df-pw 3960  df-sn 3976  df-pr 3978  df-tp 3980  df-op 3982  df-uni 4190  df-iun 4271  df-br 4391  df-opab 4449  df-mpt 4450  df-tr 4484  df-eprel 4730  df-id 4734  df-po 4739  df-so 4740  df-fr 4777  df-we 4779  df-ord 4820  df-on 4821  df-lim 4822  df-suc 4823  df-xp 4944  df-rel 4945  df-cnv 4946  df-co 4947  df-dm 4948  df-rn 4949  df-res 4950  df-ima 4951  df-iota 5479  df-fun 5518  df-fn 5519  df-f 5520  df-f1 5521  df-fo 5522  df-f1o 5523  df-fv 5524  df-riota 6151  df-ov 6193  df-oprab 6194  df-mpt2 6195  df-om 6577  df-1st 6677  df-2nd 6678  df-recs 6932  df-rdg 6966  df-er 7201  df-en 7411  df-dom 7412  df-sdom 7413  df-sup 7792  df-pnf 9521  df-mnf 9522  df-xr 9523  df-ltxr 9524  df-le 9525  df-sub 9698  df-neg 9699  df-div 10095  df-nn 10424  df-n0 10681  df-z 10748  df-uz 10963  df-q 11055  df-rp 11093
This theorem is referenced by:  alrple  11277  ovollb2  21088  ovolun  21098  ovoliun  21104  ovolscalem2  21113  nulmbl2  21134
  Copyright terms: Public domain W3C validator