MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpundir Structured version   Unicode version

Theorem xpundir 5042
Description: Distributive law for Cartesian product over union. Similar to Theorem 103 of [Suppes] p. 52. (Contributed by NM, 30-Sep-2002.)
Assertion
Ref Expression
xpundir  |-  ( ( A  u.  B )  X.  C )  =  ( ( A  X.  C )  u.  ( B  X.  C ) )

Proof of Theorem xpundir
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-xp 4994 . 2  |-  ( ( A  u.  B )  X.  C )  =  { <. x ,  y
>.  |  ( x  e.  ( A  u.  B
)  /\  y  e.  C ) }
2 df-xp 4994 . . . 4  |-  ( A  X.  C )  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  e.  C ) }
3 df-xp 4994 . . . 4  |-  ( B  X.  C )  =  { <. x ,  y
>.  |  ( x  e.  B  /\  y  e.  C ) }
42, 3uneq12i 3642 . . 3  |-  ( ( A  X.  C )  u.  ( B  X.  C ) )  =  ( { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  C ) }  u.  { <. x ,  y >.  |  ( x  e.  B  /\  y  e.  C ) } )
5 elun 3631 . . . . . . 7  |-  ( x  e.  ( A  u.  B )  <->  ( x  e.  A  \/  x  e.  B ) )
65anbi1i 693 . . . . . 6  |-  ( ( x  e.  ( A  u.  B )  /\  y  e.  C )  <->  ( ( x  e.  A  \/  x  e.  B
)  /\  y  e.  C ) )
7 andir 866 . . . . . 6  |-  ( ( ( x  e.  A  \/  x  e.  B
)  /\  y  e.  C )  <->  ( (
x  e.  A  /\  y  e.  C )  \/  ( x  e.  B  /\  y  e.  C
) ) )
86, 7bitri 249 . . . . 5  |-  ( ( x  e.  ( A  u.  B )  /\  y  e.  C )  <->  ( ( x  e.  A  /\  y  e.  C
)  \/  ( x  e.  B  /\  y  e.  C ) ) )
98opabbii 4503 . . . 4  |-  { <. x ,  y >.  |  ( x  e.  ( A  u.  B )  /\  y  e.  C ) }  =  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  e.  C
)  \/  ( x  e.  B  /\  y  e.  C ) ) }
10 unopab 4514 . . . 4  |-  ( {
<. x ,  y >.  |  ( x  e.  A  /\  y  e.  C ) }  u.  {
<. x ,  y >.  |  ( x  e.  B  /\  y  e.  C ) } )  =  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  e.  C
)  \/  ( x  e.  B  /\  y  e.  C ) ) }
119, 10eqtr4i 2486 . . 3  |-  { <. x ,  y >.  |  ( x  e.  ( A  u.  B )  /\  y  e.  C ) }  =  ( { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  C ) }  u.  {
<. x ,  y >.  |  ( x  e.  B  /\  y  e.  C ) } )
124, 11eqtr4i 2486 . 2  |-  ( ( A  X.  C )  u.  ( B  X.  C ) )  =  { <. x ,  y
>.  |  ( x  e.  ( A  u.  B
)  /\  y  e.  C ) }
131, 12eqtr4i 2486 1  |-  ( ( A  u.  B )  X.  C )  =  ( ( A  X.  C )  u.  ( B  X.  C ) )
Colors of variables: wff setvar class
Syntax hints:    \/ wo 366    /\ wa 367    = wceq 1398    e. wcel 1823    u. cun 3459   {copab 4496    X. cxp 4986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-v 3108  df-un 3466  df-opab 4498  df-xp 4994
This theorem is referenced by:  xpun  5046  resundi  5275  xpfi  7783  cdaassen  8553  hashxplem  12478  ustund  20893  cnmpt2pc  21597  pwssplit4  31277  xpprsng  33194
  Copyright terms: Public domain W3C validator