MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsvsca Structured version   Unicode version

Theorem xpsvsca 15195
Description: Value of the scalar multiplication function in a binary structure product. (Contributed by Mario Carneiro, 15-Aug-2015.)
Hypotheses
Ref Expression
xpssca.t  |-  T  =  ( R  X.s  S )
xpssca.g  |-  G  =  (Scalar `  R )
xpssca.1  |-  ( ph  ->  R  e.  V )
xpssca.2  |-  ( ph  ->  S  e.  W )
xpsvsca.x  |-  X  =  ( Base `  R
)
xpsvsca.y  |-  Y  =  ( Base `  S
)
xpsvsca.k  |-  K  =  ( Base `  G
)
xpsvsca.m  |-  .x.  =  ( .s `  R )
xpsvsca.n  |-  .X.  =  ( .s `  S )
xpsvsca.p  |-  .xb  =  ( .s `  T )
xpsvsca.3  |-  ( ph  ->  A  e.  K )
xpsvsca.4  |-  ( ph  ->  B  e.  X )
xpsvsca.5  |-  ( ph  ->  C  e.  Y )
xpsvsca.6  |-  ( ph  ->  ( A  .x.  B
)  e.  X )
xpsvsca.7  |-  ( ph  ->  ( A  .X.  C
)  e.  Y )
Assertion
Ref Expression
xpsvsca  |-  ( ph  ->  ( A  .xb  <. B ,  C >. )  =  <. ( A  .x.  B ) ,  ( A  .X.  C ) >. )

Proof of Theorem xpsvsca
Dummy variables  k 
a  x  y  c  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpsvsca.3 . . 3  |-  ( ph  ->  A  e.  K )
2 df-ov 6283 . . . . 5  |-  ( B ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) C )  =  ( ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) `
 <. B ,  C >. )
3 xpsvsca.4 . . . . . 6  |-  ( ph  ->  B  e.  X )
4 xpsvsca.5 . . . . . 6  |-  ( ph  ->  C  e.  Y )
5 eqid 2404 . . . . . . 7  |-  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) )  =  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  {
y } ) )
65xpsfval 15183 . . . . . 6  |-  ( ( B  e.  X  /\  C  e.  Y )  ->  ( B ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) C )  =  `' ( { B }  +c  { C } ) )
73, 4, 6syl2anc 661 . . . . 5  |-  ( ph  ->  ( B ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) C )  =  `' ( { B }  +c  { C } ) )
82, 7syl5eqr 2459 . . . 4  |-  ( ph  ->  ( ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  {
y } ) ) `
 <. B ,  C >. )  =  `' ( { B }  +c  { C } ) )
9 opelxpi 4857 . . . . . 6  |-  ( ( B  e.  X  /\  C  e.  Y )  -> 
<. B ,  C >.  e.  ( X  X.  Y
) )
103, 4, 9syl2anc 661 . . . . 5  |-  ( ph  -> 
<. B ,  C >.  e.  ( X  X.  Y
) )
115xpsff1o2 15187 . . . . . . 7  |-  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) : ( X  X.  Y ) -1-1-onto-> ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  {
y } ) )
12 f1of 5801 . . . . . . 7  |-  ( ( x  e.  X , 
y  e.  Y  |->  `' ( { x }  +c  { y } ) ) : ( X  X.  Y ) -1-1-onto-> ran  (
x  e.  X , 
y  e.  Y  |->  `' ( { x }  +c  { y } ) )  ->  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  {
y } ) ) : ( X  X.  Y ) --> ran  (
x  e.  X , 
y  e.  Y  |->  `' ( { x }  +c  { y } ) ) )
1311, 12ax-mp 5 . . . . . 6  |-  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) : ( X  X.  Y ) --> ran  (
x  e.  X , 
y  e.  Y  |->  `' ( { x }  +c  { y } ) )
1413ffvelrni 6010 . . . . 5  |-  ( <. B ,  C >.  e.  ( X  X.  Y
)  ->  ( (
x  e.  X , 
y  e.  Y  |->  `' ( { x }  +c  { y } ) ) `  <. B ,  C >. )  e.  ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) )
1510, 14syl 17 . . . 4  |-  ( ph  ->  ( ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  {
y } ) ) `
 <. B ,  C >. )  e.  ran  (
x  e.  X , 
y  e.  Y  |->  `' ( { x }  +c  { y } ) ) )
168, 15eqeltrrd 2493 . . 3  |-  ( ph  ->  `' ( { B }  +c  { C }
)  e.  ran  (
x  e.  X , 
y  e.  Y  |->  `' ( { x }  +c  { y } ) ) )
17 xpssca.t . . . . 5  |-  T  =  ( R  X.s  S )
18 xpsvsca.x . . . . 5  |-  X  =  ( Base `  R
)
19 xpsvsca.y . . . . 5  |-  Y  =  ( Base `  S
)
20 xpssca.1 . . . . 5  |-  ( ph  ->  R  e.  V )
21 xpssca.2 . . . . 5  |-  ( ph  ->  S  e.  W )
22 xpssca.g . . . . 5  |-  G  =  (Scalar `  R )
23 eqid 2404 . . . . 5  |-  ( G
X_s `' ( { R }  +c  { S }
) )  =  ( G X_s `' ( { R }  +c  { S }
) )
2417, 18, 19, 20, 21, 5, 22, 23xpsval 15188 . . . 4  |-  ( ph  ->  T  =  ( `' ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) )  "s  ( G X_s `' ( { R }  +c  { S } ) ) ) )
2517, 18, 19, 20, 21, 5, 22, 23xpslem 15189 . . . 4  |-  ( ph  ->  ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  {
y } ) )  =  ( Base `  ( G X_s `' ( { R }  +c  { S }
) ) ) )
26 f1ocnv 5813 . . . . . 6  |-  ( ( x  e.  X , 
y  e.  Y  |->  `' ( { x }  +c  { y } ) ) : ( X  X.  Y ) -1-1-onto-> ran  (
x  e.  X , 
y  e.  Y  |->  `' ( { x }  +c  { y } ) )  ->  `' (
x  e.  X , 
y  e.  Y  |->  `' ( { x }  +c  { y } ) ) : ran  (
x  e.  X , 
y  e.  Y  |->  `' ( { x }  +c  { y } ) ) -1-1-onto-> ( X  X.  Y
) )
2711, 26mp1i 13 . . . . 5  |-  ( ph  ->  `' ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  {
y } ) ) : ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) -1-1-onto-> ( X  X.  Y ) )
28 f1ofo 5808 . . . . 5  |-  ( `' ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) : ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) -1-1-onto-> ( X  X.  Y
)  ->  `' (
x  e.  X , 
y  e.  Y  |->  `' ( { x }  +c  { y } ) ) : ran  (
x  e.  X , 
y  e.  Y  |->  `' ( { x }  +c  { y } ) ) -onto-> ( X  X.  Y ) )
2927, 28syl 17 . . . 4  |-  ( ph  ->  `' ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  {
y } ) ) : ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) )
-onto-> ( X  X.  Y
) )
30 ovex 6308 . . . . 5  |-  ( G
X_s `' ( { R }  +c  { S }
) )  e.  _V
3130a1i 11 . . . 4  |-  ( ph  ->  ( G X_s `' ( { R }  +c  { S }
) )  e.  _V )
32 fvex 5861 . . . . . . . 8  |-  (Scalar `  R )  e.  _V
3322, 32eqeltri 2488 . . . . . . 7  |-  G  e. 
_V
3433a1i 11 . . . . . 6  |-  ( T. 
->  G  e.  _V )
35 ovex 6308 . . . . . . . 8  |-  ( { R }  +c  { S } )  e.  _V
3635cnvex 6733 . . . . . . 7  |-  `' ( { R }  +c  { S } )  e. 
_V
3736a1i 11 . . . . . 6  |-  ( T. 
->  `' ( { R }  +c  { S }
)  e.  _V )
3823, 34, 37prdssca 15072 . . . . 5  |-  ( T. 
->  G  =  (Scalar `  ( G X_s `' ( { R }  +c  { S }
) ) ) )
3938trud 1416 . . . 4  |-  G  =  (Scalar `  ( G X_s `' ( { R }  +c  { S } ) ) )
40 xpsvsca.k . . . 4  |-  K  =  ( Base `  G
)
41 eqid 2404 . . . 4  |-  ( .s
`  ( G X_s `' ( { R }  +c  { S } ) ) )  =  ( .s
`  ( G X_s `' ( { R }  +c  { S } ) ) )
42 xpsvsca.p . . . 4  |-  .xb  =  ( .s `  T )
4327f1ovscpbl 15142 . . . 4  |-  ( (
ph  /\  ( a  e.  K  /\  b  e.  ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  {
y } ) )  /\  c  e.  ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) ) )  ->  ( ( `' ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) `  b
)  =  ( `' ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) `  c
)  ->  ( `' ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) `  (
a ( .s `  ( G X_s `' ( { R }  +c  { S }
) ) ) b ) )  =  ( `' ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  {
y } ) ) `
 ( a ( .s `  ( G
X_s `' ( { R }  +c  { S }
) ) ) c ) ) ) )
4424, 25, 29, 31, 39, 40, 41, 42, 43imasvscaval 15154 . . 3  |-  ( (
ph  /\  A  e.  K  /\  `' ( { B }  +c  { C } )  e.  ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) )  -> 
( A  .xb  ( `' ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  {
y } ) ) `
 `' ( { B }  +c  { C } ) ) )  =  ( `' ( x  e.  X , 
y  e.  Y  |->  `' ( { x }  +c  { y } ) ) `  ( A ( .s `  ( G X_s `' ( { R }  +c  { S }
) ) ) `' ( { B }  +c  { C } ) ) ) )
451, 16, 44mpd3an23 1330 . 2  |-  ( ph  ->  ( A  .xb  ( `' ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  {
y } ) ) `
 `' ( { B }  +c  { C } ) ) )  =  ( `' ( x  e.  X , 
y  e.  Y  |->  `' ( { x }  +c  { y } ) ) `  ( A ( .s `  ( G X_s `' ( { R }  +c  { S }
) ) ) `' ( { B }  +c  { C } ) ) ) )
46 f1ocnvfv 6167 . . . . 5  |-  ( ( ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) : ( X  X.  Y ) -1-1-onto-> ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) )  /\  <. B ,  C >.  e.  ( X  X.  Y ) )  ->  ( (
( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) `  <. B ,  C >. )  =  `' ( { B }  +c  { C }
)  ->  ( `' ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) `  `' ( { B }  +c  { C } ) )  =  <. B ,  C >. ) )
4711, 10, 46sylancr 663 . . . 4  |-  ( ph  ->  ( ( ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) `
 <. B ,  C >. )  =  `' ( { B }  +c  { C } )  -> 
( `' ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) `
 `' ( { B }  +c  { C } ) )  = 
<. B ,  C >. ) )
488, 47mpd 15 . . 3  |-  ( ph  ->  ( `' ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) `
 `' ( { B }  +c  { C } ) )  = 
<. B ,  C >. )
4948oveq2d 6296 . 2  |-  ( ph  ->  ( A  .xb  ( `' ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  {
y } ) ) `
 `' ( { B }  +c  { C } ) ) )  =  ( A  .xb  <. B ,  C >. ) )
50 iftrue 3893 . . . . . . . . . . . 12  |-  ( k  =  (/)  ->  if ( k  =  (/) ,  R ,  S )  =  R )
5150fveq2d 5855 . . . . . . . . . . 11  |-  ( k  =  (/)  ->  ( .s
`  if ( k  =  (/) ,  R ,  S ) )  =  ( .s `  R
) )
52 xpsvsca.m . . . . . . . . . . 11  |-  .x.  =  ( .s `  R )
5351, 52syl6eqr 2463 . . . . . . . . . 10  |-  ( k  =  (/)  ->  ( .s
`  if ( k  =  (/) ,  R ,  S ) )  = 
.x.  )
54 eqidd 2405 . . . . . . . . . 10  |-  ( k  =  (/)  ->  A  =  A )
55 iftrue 3893 . . . . . . . . . 10  |-  ( k  =  (/)  ->  if ( k  =  (/) ,  B ,  C )  =  B )
5653, 54, 55oveq123d 6301 . . . . . . . . 9  |-  ( k  =  (/)  ->  ( A ( .s `  if ( k  =  (/) ,  R ,  S ) ) if ( k  =  (/) ,  B ,  C ) )  =  ( A  .x.  B
) )
57 iftrue 3893 . . . . . . . . 9  |-  ( k  =  (/)  ->  if ( k  =  (/) ,  ( A  .x.  B ) ,  ( A  .X.  C ) )  =  ( A  .x.  B
) )
5856, 57eqtr4d 2448 . . . . . . . 8  |-  ( k  =  (/)  ->  ( A ( .s `  if ( k  =  (/) ,  R ,  S ) ) if ( k  =  (/) ,  B ,  C ) )  =  if ( k  =  (/) ,  ( A  .x.  B ) ,  ( A  .X.  C )
) )
59 iffalse 3896 . . . . . . . . . . . 12  |-  ( -.  k  =  (/)  ->  if ( k  =  (/) ,  R ,  S )  =  S )
6059fveq2d 5855 . . . . . . . . . . 11  |-  ( -.  k  =  (/)  ->  ( .s `  if ( k  =  (/) ,  R ,  S ) )  =  ( .s `  S
) )
61 xpsvsca.n . . . . . . . . . . 11  |-  .X.  =  ( .s `  S )
6260, 61syl6eqr 2463 . . . . . . . . . 10  |-  ( -.  k  =  (/)  ->  ( .s `  if ( k  =  (/) ,  R ,  S ) )  = 
.X.  )
63 eqidd 2405 . . . . . . . . . 10  |-  ( -.  k  =  (/)  ->  A  =  A )
64 iffalse 3896 . . . . . . . . . 10  |-  ( -.  k  =  (/)  ->  if ( k  =  (/) ,  B ,  C )  =  C )
6562, 63, 64oveq123d 6301 . . . . . . . . 9  |-  ( -.  k  =  (/)  ->  ( A ( .s `  if ( k  =  (/) ,  R ,  S ) ) if ( k  =  (/) ,  B ,  C ) )  =  ( A  .X.  C
) )
66 iffalse 3896 . . . . . . . . 9  |-  ( -.  k  =  (/)  ->  if ( k  =  (/) ,  ( A  .x.  B
) ,  ( A 
.X.  C ) )  =  ( A  .X.  C ) )
6765, 66eqtr4d 2448 . . . . . . . 8  |-  ( -.  k  =  (/)  ->  ( A ( .s `  if ( k  =  (/) ,  R ,  S ) ) if ( k  =  (/) ,  B ,  C ) )  =  if ( k  =  (/) ,  ( A  .x.  B ) ,  ( A  .X.  C )
) )
6858, 67pm2.61i 166 . . . . . . 7  |-  ( A ( .s `  if ( k  =  (/) ,  R ,  S ) ) if ( k  =  (/) ,  B ,  C ) )  =  if ( k  =  (/) ,  ( A  .x.  B ) ,  ( A  .X.  C )
)
6920adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  2o )  ->  R  e.  V )
7021adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  2o )  ->  S  e.  W )
71 simpr 461 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  2o )  ->  k  e.  2o )
72 xpscfv 15178 . . . . . . . . . 10  |-  ( ( R  e.  V  /\  S  e.  W  /\  k  e.  2o )  ->  ( `' ( { R }  +c  { S } ) `  k
)  =  if ( k  =  (/) ,  R ,  S ) )
7369, 70, 71, 72syl3anc 1232 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  2o )  ->  ( `' ( { R }  +c  { S } ) `
 k )  =  if ( k  =  (/) ,  R ,  S
) )
7473fveq2d 5855 . . . . . . . 8  |-  ( (
ph  /\  k  e.  2o )  ->  ( .s
`  ( `' ( { R }  +c  { S } ) `  k ) )  =  ( .s `  if ( k  =  (/) ,  R ,  S ) ) )
75 eqidd 2405 . . . . . . . 8  |-  ( (
ph  /\  k  e.  2o )  ->  A  =  A )
763adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  2o )  ->  B  e.  X )
774adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  2o )  ->  C  e.  Y )
78 xpscfv 15178 . . . . . . . . 9  |-  ( ( B  e.  X  /\  C  e.  Y  /\  k  e.  2o )  ->  ( `' ( { B }  +c  { C } ) `  k
)  =  if ( k  =  (/) ,  B ,  C ) )
7976, 77, 71, 78syl3anc 1232 . . . . . . . 8  |-  ( (
ph  /\  k  e.  2o )  ->  ( `' ( { B }  +c  { C } ) `
 k )  =  if ( k  =  (/) ,  B ,  C
) )
8074, 75, 79oveq123d 6301 . . . . . . 7  |-  ( (
ph  /\  k  e.  2o )  ->  ( A ( .s `  ( `' ( { R }  +c  { S }
) `  k )
) ( `' ( { B }  +c  { C } ) `  k ) )  =  ( A ( .s
`  if ( k  =  (/) ,  R ,  S ) ) if ( k  =  (/) ,  B ,  C ) ) )
81 xpsvsca.6 . . . . . . . . 9  |-  ( ph  ->  ( A  .x.  B
)  e.  X )
8281adantr 465 . . . . . . . 8  |-  ( (
ph  /\  k  e.  2o )  ->  ( A 
.x.  B )  e.  X )
83 xpsvsca.7 . . . . . . . . 9  |-  ( ph  ->  ( A  .X.  C
)  e.  Y )
8483adantr 465 . . . . . . . 8  |-  ( (
ph  /\  k  e.  2o )  ->  ( A 
.X.  C )  e.  Y )
85 xpscfv 15178 . . . . . . . 8  |-  ( ( ( A  .x.  B
)  e.  X  /\  ( A  .X.  C )  e.  Y  /\  k  e.  2o )  ->  ( `' ( { ( A  .x.  B ) }  +c  { ( A  .X.  C ) } ) `  k
)  =  if ( k  =  (/) ,  ( A  .x.  B ) ,  ( A  .X.  C ) ) )
8682, 84, 71, 85syl3anc 1232 . . . . . . 7  |-  ( (
ph  /\  k  e.  2o )  ->  ( `' ( { ( A 
.x.  B ) }  +c  { ( A 
.X.  C ) } ) `  k )  =  if ( k  =  (/) ,  ( A 
.x.  B ) ,  ( A  .X.  C
) ) )
8768, 80, 863eqtr4a 2471 . . . . . 6  |-  ( (
ph  /\  k  e.  2o )  ->  ( A ( .s `  ( `' ( { R }  +c  { S }
) `  k )
) ( `' ( { B }  +c  { C } ) `  k ) )  =  ( `' ( { ( A  .x.  B
) }  +c  {
( A  .X.  C
) } ) `  k ) )
8887mpteq2dva 4483 . . . . 5  |-  ( ph  ->  ( k  e.  2o  |->  ( A ( .s `  ( `' ( { R }  +c  { S }
) `  k )
) ( `' ( { B }  +c  { C } ) `  k ) ) )  =  ( k  e.  2o  |->  ( `' ( { ( A  .x.  B ) }  +c  { ( A  .X.  C
) } ) `  k ) ) )
89 eqid 2404 . . . . . 6  |-  ( Base `  ( G X_s `' ( { R }  +c  { S }
) ) )  =  ( Base `  ( G X_s `' ( { R }  +c  { S }
) ) )
9033a1i 11 . . . . . 6  |-  ( ph  ->  G  e.  _V )
91 2on 7177 . . . . . . 7  |-  2o  e.  On
9291a1i 11 . . . . . 6  |-  ( ph  ->  2o  e.  On )
93 xpscfn 15175 . . . . . . 7  |-  ( ( R  e.  V  /\  S  e.  W )  ->  `' ( { R }  +c  { S }
)  Fn  2o )
9420, 21, 93syl2anc 661 . . . . . 6  |-  ( ph  ->  `' ( { R }  +c  { S }
)  Fn  2o )
9516, 25eleqtrd 2494 . . . . . 6  |-  ( ph  ->  `' ( { B }  +c  { C }
)  e.  ( Base `  ( G X_s `' ( { R }  +c  { S }
) ) ) )
9623, 89, 41, 40, 90, 92, 94, 1, 95prdsvscaval 15095 . . . . 5  |-  ( ph  ->  ( A ( .s
`  ( G X_s `' ( { R }  +c  { S } ) ) ) `' ( { B }  +c  { C } ) )  =  ( k  e.  2o  |->  ( A ( .s `  ( `' ( { R }  +c  { S }
) `  k )
) ( `' ( { B }  +c  { C } ) `  k ) ) ) )
97 xpscfn 15175 . . . . . . 7  |-  ( ( ( A  .x.  B
)  e.  X  /\  ( A  .X.  C )  e.  Y )  ->  `' ( { ( A  .x.  B ) }  +c  { ( A  .X.  C ) } )  Fn  2o )
9881, 83, 97syl2anc 661 . . . . . 6  |-  ( ph  ->  `' ( { ( A  .x.  B ) }  +c  { ( A  .X.  C ) } )  Fn  2o )
99 dffn5 5896 . . . . . 6  |-  ( `' ( { ( A 
.x.  B ) }  +c  { ( A 
.X.  C ) } )  Fn  2o  <->  `' ( { ( A  .x.  B ) }  +c  { ( A  .X.  C
) } )  =  ( k  e.  2o  |->  ( `' ( { ( A  .x.  B ) }  +c  { ( A  .X.  C ) } ) `  k
) ) )
10098, 99sylib 198 . . . . 5  |-  ( ph  ->  `' ( { ( A  .x.  B ) }  +c  { ( A  .X.  C ) } )  =  ( k  e.  2o  |->  ( `' ( { ( A  .x.  B ) }  +c  { ( A  .X.  C ) } ) `  k
) ) )
10188, 96, 1003eqtr4d 2455 . . . 4  |-  ( ph  ->  ( A ( .s
`  ( G X_s `' ( { R }  +c  { S } ) ) ) `' ( { B }  +c  { C } ) )  =  `' ( { ( A  .x.  B ) }  +c  { ( A  .X.  C ) } ) )
102101fveq2d 5855 . . 3  |-  ( ph  ->  ( `' ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) `
 ( A ( .s `  ( G
X_s `' ( { R }  +c  { S }
) ) ) `' ( { B }  +c  { C } ) ) )  =  ( `' ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  {
y } ) ) `
 `' ( { ( A  .x.  B
) }  +c  {
( A  .X.  C
) } ) ) )
103 df-ov 6283 . . . . 5  |-  ( ( A  .x.  B ) ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) ( A 
.X.  C ) )  =  ( ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) `
 <. ( A  .x.  B ) ,  ( A  .X.  C ) >. )
1045xpsfval 15183 . . . . . 6  |-  ( ( ( A  .x.  B
)  e.  X  /\  ( A  .X.  C )  e.  Y )  -> 
( ( A  .x.  B ) ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) ( A  .X.  C
) )  =  `' ( { ( A  .x.  B ) }  +c  { ( A  .X.  C
) } ) )
10581, 83, 104syl2anc 661 . . . . 5  |-  ( ph  ->  ( ( A  .x.  B ) ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) ( A  .X.  C
) )  =  `' ( { ( A  .x.  B ) }  +c  { ( A  .X.  C
) } ) )
106103, 105syl5eqr 2459 . . . 4  |-  ( ph  ->  ( ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  {
y } ) ) `
 <. ( A  .x.  B ) ,  ( A  .X.  C ) >. )  =  `' ( { ( A  .x.  B ) }  +c  { ( A  .X.  C
) } ) )
107 opelxpi 4857 . . . . . 6  |-  ( ( ( A  .x.  B
)  e.  X  /\  ( A  .X.  C )  e.  Y )  ->  <. ( A  .x.  B
) ,  ( A 
.X.  C ) >.  e.  ( X  X.  Y
) )
10881, 83, 107syl2anc 661 . . . . 5  |-  ( ph  -> 
<. ( A  .x.  B
) ,  ( A 
.X.  C ) >.  e.  ( X  X.  Y
) )
109 f1ocnvfv 6167 . . . . 5  |-  ( ( ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) : ( X  X.  Y ) -1-1-onto-> ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) )  /\  <. ( A  .x.  B ) ,  ( A  .X.  C ) >.  e.  ( X  X.  Y ) )  ->  ( (
( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) `  <. ( A  .x.  B ) ,  ( A  .X.  C ) >. )  =  `' ( { ( A  .x.  B ) }  +c  { ( A  .X.  C ) } )  ->  ( `' ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  {
y } ) ) `
 `' ( { ( A  .x.  B
) }  +c  {
( A  .X.  C
) } ) )  =  <. ( A  .x.  B ) ,  ( A  .X.  C ) >. ) )
11011, 108, 109sylancr 663 . . . 4  |-  ( ph  ->  ( ( ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) `
 <. ( A  .x.  B ) ,  ( A  .X.  C ) >. )  =  `' ( { ( A  .x.  B ) }  +c  { ( A  .X.  C
) } )  -> 
( `' ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) `
 `' ( { ( A  .x.  B
) }  +c  {
( A  .X.  C
) } ) )  =  <. ( A  .x.  B ) ,  ( A  .X.  C ) >. ) )
111106, 110mpd 15 . . 3  |-  ( ph  ->  ( `' ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) `
 `' ( { ( A  .x.  B
) }  +c  {
( A  .X.  C
) } ) )  =  <. ( A  .x.  B ) ,  ( A  .X.  C ) >. )
112102, 111eqtrd 2445 . 2  |-  ( ph  ->  ( `' ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) `
 ( A ( .s `  ( G
X_s `' ( { R }  +c  { S }
) ) ) `' ( { B }  +c  { C } ) ) )  =  <. ( A  .x.  B ) ,  ( A  .X.  C ) >. )
11345, 49, 1123eqtr3d 2453 1  |-  ( ph  ->  ( A  .xb  <. B ,  C >. )  =  <. ( A  .x.  B ) ,  ( A  .X.  C ) >. )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1407   T. wtru 1408    e. wcel 1844   _Vcvv 3061   (/)c0 3740   ifcif 3887   {csn 3974   <.cop 3980    |-> cmpt 4455    X. cxp 4823   `'ccnv 4824   ran crn 4826   Oncon0 5412    Fn wfn 5566   -->wf 5567   -onto->wfo 5569   -1-1-onto->wf1o 5570   ` cfv 5571  (class class class)co 6280    |-> cmpt2 6282   2oc2o 7163    +c ccda 8581   Basecbs 14843  Scalarcsca 14914   .scvsca 14915   X_scprds 15062    X.s cxps 15122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-8 1846  ax-9 1848  ax-10 1863  ax-11 1868  ax-12 1880  ax-13 2028  ax-ext 2382  ax-rep 4509  ax-sep 4519  ax-nul 4527  ax-pow 4574  ax-pr 4632  ax-un 6576  ax-cnex 9580  ax-resscn 9581  ax-1cn 9582  ax-icn 9583  ax-addcl 9584  ax-addrcl 9585  ax-mulcl 9586  ax-mulrcl 9587  ax-mulcom 9588  ax-addass 9589  ax-mulass 9590  ax-distr 9591  ax-i2m1 9592  ax-1ne0 9593  ax-1rid 9594  ax-rnegex 9595  ax-rrecex 9596  ax-cnre 9597  ax-pre-lttri 9598  ax-pre-lttrn 9599  ax-pre-ltadd 9600  ax-pre-mulgt0 9601
This theorem depends on definitions:  df-bi 187  df-or 370  df-an 371  df-3or 977  df-3an 978  df-tru 1410  df-ex 1636  df-nf 1640  df-sb 1766  df-eu 2244  df-mo 2245  df-clab 2390  df-cleq 2396  df-clel 2399  df-nfc 2554  df-ne 2602  df-nel 2603  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3063  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3741  df-if 3888  df-pw 3959  df-sn 3975  df-pr 3977  df-tp 3979  df-op 3981  df-uni 4194  df-int 4230  df-iun 4275  df-br 4398  df-opab 4456  df-mpt 4457  df-tr 4492  df-eprel 4736  df-id 4740  df-po 4746  df-so 4747  df-fr 4784  df-we 4786  df-xp 4831  df-rel 4832  df-cnv 4833  df-co 4834  df-dm 4835  df-rn 4836  df-res 4837  df-ima 4838  df-pred 5369  df-ord 5415  df-on 5416  df-lim 5417  df-suc 5418  df-iota 5535  df-fun 5573  df-fn 5574  df-f 5575  df-f1 5576  df-fo 5577  df-f1o 5578  df-fv 5579  df-riota 6242  df-ov 6283  df-oprab 6284  df-mpt2 6285  df-om 6686  df-1st 6786  df-2nd 6787  df-wrecs 7015  df-recs 7077  df-rdg 7115  df-1o 7169  df-2o 7170  df-oadd 7173  df-er 7350  df-map 7461  df-ixp 7510  df-en 7557  df-dom 7558  df-sdom 7559  df-fin 7560  df-sup 7937  df-cda 8582  df-pnf 9662  df-mnf 9663  df-xr 9664  df-ltxr 9665  df-le 9666  df-sub 9845  df-neg 9846  df-nn 10579  df-2 10637  df-3 10638  df-4 10639  df-5 10640  df-6 10641  df-7 10642  df-8 10643  df-9 10644  df-10 10645  df-n0 10839  df-z 10908  df-dec 11022  df-uz 11130  df-fz 11729  df-struct 14845  df-ndx 14846  df-slot 14847  df-base 14848  df-plusg 14924  df-mulr 14925  df-sca 14927  df-vsca 14928  df-ip 14929  df-tset 14930  df-ple 14931  df-ds 14933  df-hom 14935  df-cco 14936  df-prds 15064  df-imas 15124  df-xps 15126
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator