MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpstopnlem2 Unicode version

Theorem xpstopnlem2 17796
Description: Lemma for xpstopn 17797. (Contributed by Mario Carneiro, 27-Aug-2015.)
Hypotheses
Ref Expression
xpstps.t  |-  T  =  ( R  X.s  S )
xpstopn.j  |-  J  =  ( TopOpen `  R )
xpstopn.k  |-  K  =  ( TopOpen `  S )
xpstopn.o  |-  O  =  ( TopOpen `  T )
xpstopnlem.x  |-  X  =  ( Base `  R
)
xpstopnlem.y  |-  Y  =  ( Base `  S
)
xpstopnlem.f  |-  F  =  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) )
Assertion
Ref Expression
xpstopnlem2  |-  ( ( R  e.  TopSp  /\  S  e.  TopSp )  ->  O  =  ( J  tX  K ) )
Distinct variable groups:    x, y, J    x, K, y    x, R, y    x, S, y   
x, X, y    x, Y, y
Allowed substitution hints:    T( x, y)    F( x, y)    O( x, y)

Proof of Theorem xpstopnlem2
StepHypRef Expression
1 eqid 2404 . . . . 5  |-  ( (Scalar `  R ) X_s `' ( { R }  +c  { S }
) )  =  ( (Scalar `  R ) X_s `' ( { R }  +c  { S } ) )
2 fvex 5701 . . . . . 6  |-  (Scalar `  R )  e.  _V
32a1i 11 . . . . 5  |-  ( ( R  e.  TopSp  /\  S  e.  TopSp )  ->  (Scalar `  R )  e.  _V )
4 2on 6691 . . . . . 6  |-  2o  e.  On
54a1i 11 . . . . 5  |-  ( ( R  e.  TopSp  /\  S  e.  TopSp )  ->  2o  e.  On )
6 xpscfn 13739 . . . . 5  |-  ( ( R  e.  TopSp  /\  S  e.  TopSp )  ->  `' ( { R }  +c  { S } )  Fn  2o )
7 eqid 2404 . . . . 5  |-  ( TopOpen `  ( (Scalar `  R ) X_s `' ( { R }  +c  { S } ) ) )  =  (
TopOpen `  ( (Scalar `  R ) X_s `' ( { R }  +c  { S }
) ) )
81, 3, 5, 6, 7prdstopn 17613 . . . 4  |-  ( ( R  e.  TopSp  /\  S  e.  TopSp )  ->  ( TopOpen
`  ( (Scalar `  R ) X_s `' ( { R }  +c  { S }
) ) )  =  ( Xt_ `  ( TopOpen  o.  `' ( { R }  +c  { S } ) ) ) )
9 topnfn 13608 . . . . . . . 8  |-  TopOpen  Fn  _V
10 dffn2 5551 . . . . . . . . 9  |-  ( `' ( { R }  +c  { S } )  Fn  2o  <->  `' ( { R }  +c  { S } ) : 2o --> _V )
116, 10sylib 189 . . . . . . . 8  |-  ( ( R  e.  TopSp  /\  S  e.  TopSp )  ->  `' ( { R }  +c  { S } ) : 2o --> _V )
12 fnfco 5568 . . . . . . . 8  |-  ( (
TopOpen  Fn  _V  /\  `' ( { R }  +c  { S } ) : 2o --> _V )  -> 
( TopOpen  o.  `' ( { R }  +c  { S } ) )  Fn  2o )
139, 11, 12sylancr 645 . . . . . . 7  |-  ( ( R  e.  TopSp  /\  S  e.  TopSp )  ->  ( TopOpen  o.  `' ( { R }  +c  { S } ) )  Fn  2o )
14 xpsfeq 13744 . . . . . . 7  |-  ( (
TopOpen  o.  `' ( { R }  +c  { S } ) )  Fn  2o  ->  `' ( { ( ( TopOpen  o.  `' ( { R }  +c  { S }
) ) `  (/) ) }  +c  { ( (
TopOpen  o.  `' ( { R }  +c  { S } ) ) `  1o ) } )  =  ( TopOpen  o.  `' ( { R }  +c  { S } ) ) )
1513, 14syl 16 . . . . . 6  |-  ( ( R  e.  TopSp  /\  S  e.  TopSp )  ->  `' ( { ( ( TopOpen  o.  `' ( { R }  +c  { S }
) ) `  (/) ) }  +c  { ( (
TopOpen  o.  `' ( { R }  +c  { S } ) ) `  1o ) } )  =  ( TopOpen  o.  `' ( { R }  +c  { S } ) ) )
16 0ex 4299 . . . . . . . . . . . . 13  |-  (/)  e.  _V
1716prid1 3872 . . . . . . . . . . . 12  |-  (/)  e.  { (/)
,  1o }
18 df2o3 6696 . . . . . . . . . . . 12  |-  2o  =  { (/) ,  1o }
1917, 18eleqtrri 2477 . . . . . . . . . . 11  |-  (/)  e.  2o
20 fvco2 5757 . . . . . . . . . . 11  |-  ( ( `' ( { R }  +c  { S }
)  Fn  2o  /\  (/) 
e.  2o )  -> 
( ( TopOpen  o.  `' ( { R }  +c  { S } ) ) `
 (/) )  =  (
TopOpen `  ( `' ( { R }  +c  { S } ) `  (/) ) ) )
216, 19, 20sylancl 644 . . . . . . . . . 10  |-  ( ( R  e.  TopSp  /\  S  e.  TopSp )  ->  (
( TopOpen  o.  `' ( { R }  +c  { S } ) ) `  (/) )  =  ( TopOpen `  ( `' ( { R }  +c  { S }
) `  (/) ) ) )
22 xpsc0 13740 . . . . . . . . . . . . 13  |-  ( R  e.  TopSp  ->  ( `' ( { R }  +c  { S } ) `  (/) )  =  R )
2322adantr 452 . . . . . . . . . . . 12  |-  ( ( R  e.  TopSp  /\  S  e.  TopSp )  ->  ( `' ( { R }  +c  { S }
) `  (/) )  =  R )
2423fveq2d 5691 . . . . . . . . . . 11  |-  ( ( R  e.  TopSp  /\  S  e.  TopSp )  ->  ( TopOpen
`  ( `' ( { R }  +c  { S } ) `  (/) ) )  =  (
TopOpen `  R ) )
25 xpstopn.j . . . . . . . . . . 11  |-  J  =  ( TopOpen `  R )
2624, 25syl6eqr 2454 . . . . . . . . . 10  |-  ( ( R  e.  TopSp  /\  S  e.  TopSp )  ->  ( TopOpen
`  ( `' ( { R }  +c  { S } ) `  (/) ) )  =  J )
2721, 26eqtrd 2436 . . . . . . . . 9  |-  ( ( R  e.  TopSp  /\  S  e.  TopSp )  ->  (
( TopOpen  o.  `' ( { R }  +c  { S } ) ) `  (/) )  =  J )
2827sneqd 3787 . . . . . . . 8  |-  ( ( R  e.  TopSp  /\  S  e.  TopSp )  ->  { ( ( TopOpen  o.  `' ( { R }  +c  { S } ) ) `  (/) ) }  =  { J } )
29 1on 6690 . . . . . . . . . . . . . 14  |-  1o  e.  On
3029elexi 2925 . . . . . . . . . . . . 13  |-  1o  e.  _V
3130prid2 3873 . . . . . . . . . . . 12  |-  1o  e.  {
(/) ,  1o }
3231, 18eleqtrri 2477 . . . . . . . . . . 11  |-  1o  e.  2o
33 fvco2 5757 . . . . . . . . . . 11  |-  ( ( `' ( { R }  +c  { S }
)  Fn  2o  /\  1o  e.  2o )  -> 
( ( TopOpen  o.  `' ( { R }  +c  { S } ) ) `
 1o )  =  ( TopOpen `  ( `' ( { R }  +c  { S } ) `  1o ) ) )
346, 32, 33sylancl 644 . . . . . . . . . 10  |-  ( ( R  e.  TopSp  /\  S  e.  TopSp )  ->  (
( TopOpen  o.  `' ( { R }  +c  { S } ) ) `  1o )  =  ( TopOpen
`  ( `' ( { R }  +c  { S } ) `  1o ) ) )
35 xpsc1 13741 . . . . . . . . . . . . 13  |-  ( S  e.  TopSp  ->  ( `' ( { R }  +c  { S } ) `  1o )  =  S
)
3635adantl 453 . . . . . . . . . . . 12  |-  ( ( R  e.  TopSp  /\  S  e.  TopSp )  ->  ( `' ( { R }  +c  { S }
) `  1o )  =  S )
3736fveq2d 5691 . . . . . . . . . . 11  |-  ( ( R  e.  TopSp  /\  S  e.  TopSp )  ->  ( TopOpen
`  ( `' ( { R }  +c  { S } ) `  1o ) )  =  (
TopOpen `  S ) )
38 xpstopn.k . . . . . . . . . . 11  |-  K  =  ( TopOpen `  S )
3937, 38syl6eqr 2454 . . . . . . . . . 10  |-  ( ( R  e.  TopSp  /\  S  e.  TopSp )  ->  ( TopOpen
`  ( `' ( { R }  +c  { S } ) `  1o ) )  =  K )
4034, 39eqtrd 2436 . . . . . . . . 9  |-  ( ( R  e.  TopSp  /\  S  e.  TopSp )  ->  (
( TopOpen  o.  `' ( { R }  +c  { S } ) ) `  1o )  =  K
)
4140sneqd 3787 . . . . . . . 8  |-  ( ( R  e.  TopSp  /\  S  e.  TopSp )  ->  { ( ( TopOpen  o.  `' ( { R }  +c  { S } ) ) `  1o ) }  =  { K } )
4228, 41oveq12d 6058 . . . . . . 7  |-  ( ( R  e.  TopSp  /\  S  e.  TopSp )  ->  ( { ( ( TopOpen  o.  `' ( { R }  +c  { S }
) ) `  (/) ) }  +c  { ( (
TopOpen  o.  `' ( { R }  +c  { S } ) ) `  1o ) } )  =  ( { J }  +c  { K } ) )
4342cnveqd 5007 . . . . . 6  |-  ( ( R  e.  TopSp  /\  S  e.  TopSp )  ->  `' ( { ( ( TopOpen  o.  `' ( { R }  +c  { S }
) ) `  (/) ) }  +c  { ( (
TopOpen  o.  `' ( { R }  +c  { S } ) ) `  1o ) } )  =  `' ( { J }  +c  { K }
) )
4415, 43eqtr3d 2438 . . . . 5  |-  ( ( R  e.  TopSp  /\  S  e.  TopSp )  ->  ( TopOpen  o.  `' ( { R }  +c  { S } ) )  =  `' ( { J }  +c  { K }
) )
4544fveq2d 5691 . . . 4  |-  ( ( R  e.  TopSp  /\  S  e.  TopSp )  ->  ( Xt_ `  ( TopOpen  o.  `' ( { R }  +c  { S } ) ) )  =  ( Xt_ `  `' ( { J }  +c  { K }
) ) )
468, 45eqtrd 2436 . . 3  |-  ( ( R  e.  TopSp  /\  S  e.  TopSp )  ->  ( TopOpen
`  ( (Scalar `  R ) X_s `' ( { R }  +c  { S }
) ) )  =  ( Xt_ `  `' ( { J }  +c  { K } ) ) )
4746oveq1d 6055 . 2  |-  ( ( R  e.  TopSp  /\  S  e.  TopSp )  ->  (
( TopOpen `  ( (Scalar `  R ) X_s `' ( { R }  +c  { S }
) ) ) qTop  `' F )  =  ( ( Xt_ `  `' ( { J }  +c  { K } ) ) qTop  `' F ) )
48 xpstps.t . . . 4  |-  T  =  ( R  X.s  S )
49 xpstopnlem.x . . . 4  |-  X  =  ( Base `  R
)
50 xpstopnlem.y . . . 4  |-  Y  =  ( Base `  S
)
51 simpl 444 . . . 4  |-  ( ( R  e.  TopSp  /\  S  e.  TopSp )  ->  R  e.  TopSp )
52 simpr 448 . . . 4  |-  ( ( R  e.  TopSp  /\  S  e.  TopSp )  ->  S  e.  TopSp )
53 xpstopnlem.f . . . 4  |-  F  =  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) )
54 eqid 2404 . . . 4  |-  (Scalar `  R )  =  (Scalar `  R )
5548, 49, 50, 51, 52, 53, 54, 1xpsval 13752 . . 3  |-  ( ( R  e.  TopSp  /\  S  e.  TopSp )  ->  T  =  ( `' F  "s  ( (Scalar `  R ) X_s `' ( { R }  +c  { S } ) ) ) )
5648, 49, 50, 51, 52, 53, 54, 1xpslem 13753 . . 3  |-  ( ( R  e.  TopSp  /\  S  e.  TopSp )  ->  ran  F  =  ( Base `  (
(Scalar `  R ) X_s `' ( { R }  +c  { S } ) ) ) )
5753xpsff1o2 13751 . . . . 5  |-  F :
( X  X.  Y
)
-1-1-onto-> ran  F
58 f1ocnv 5646 . . . . 5  |-  ( F : ( X  X.  Y ) -1-1-onto-> ran  F  ->  `' F : ran  F -1-1-onto-> ( X  X.  Y ) )
5957, 58mp1i 12 . . . 4  |-  ( ( R  e.  TopSp  /\  S  e.  TopSp )  ->  `' F : ran  F -1-1-onto-> ( X  X.  Y ) )
60 f1ofo 5640 . . . 4  |-  ( `' F : ran  F -1-1-onto-> ( X  X.  Y )  ->  `' F : ran  F -onto->
( X  X.  Y
) )
6159, 60syl 16 . . 3  |-  ( ( R  e.  TopSp  /\  S  e.  TopSp )  ->  `' F : ran  F -onto-> ( X  X.  Y ) )
62 ovex 6065 . . . 4  |-  ( (Scalar `  R ) X_s `' ( { R }  +c  { S }
) )  e.  _V
6362a1i 11 . . 3  |-  ( ( R  e.  TopSp  /\  S  e.  TopSp )  ->  (
(Scalar `  R ) X_s `' ( { R }  +c  { S } ) )  e.  _V )
64 xpstopn.o . . 3  |-  O  =  ( TopOpen `  T )
6555, 56, 61, 63, 7, 64imastopn 17705 . 2  |-  ( ( R  e.  TopSp  /\  S  e.  TopSp )  ->  O  =  ( ( TopOpen `  ( (Scalar `  R ) X_s `' ( { R }  +c  { S } ) ) ) qTop  `' F
) )
6649, 25istps 16956 . . . . 5  |-  ( R  e.  TopSp 
<->  J  e.  (TopOn `  X ) )
6751, 66sylib 189 . . . 4  |-  ( ( R  e.  TopSp  /\  S  e.  TopSp )  ->  J  e.  (TopOn `  X )
)
6850, 38istps 16956 . . . . 5  |-  ( S  e.  TopSp 
<->  K  e.  (TopOn `  Y ) )
6952, 68sylib 189 . . . 4  |-  ( ( R  e.  TopSp  /\  S  e.  TopSp )  ->  K  e.  (TopOn `  Y )
)
7053, 67, 69xpstopnlem1 17794 . . 3  |-  ( ( R  e.  TopSp  /\  S  e.  TopSp )  ->  F  e.  ( ( J  tX  K )  Homeo  ( Xt_ `  `' ( { J }  +c  { K }
) ) ) )
71 hmeocnv 17747 . . 3  |-  ( F  e.  ( ( J 
tX  K )  Homeo  (
Xt_ `  `' ( { J }  +c  { K } ) ) )  ->  `' F  e.  ( ( Xt_ `  `' ( { J }  +c  { K } ) ) 
Homeo  ( J  tX  K
) ) )
72 hmeoqtop 17760 . . 3  |-  ( `' F  e.  ( (
Xt_ `  `' ( { J }  +c  { K } ) )  Homeo  ( J  tX  K ) )  ->  ( J  tX  K )  =  ( ( Xt_ `  `' ( { J }  +c  { K } ) ) qTop  `' F ) )
7370, 71, 723syl 19 . 2  |-  ( ( R  e.  TopSp  /\  S  e.  TopSp )  ->  ( J  tX  K )  =  ( ( Xt_ `  `' ( { J }  +c  { K } ) ) qTop  `' F ) )
7447, 65, 733eqtr4d 2446 1  |-  ( ( R  e.  TopSp  /\  S  e.  TopSp )  ->  O  =  ( J  tX  K ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721   _Vcvv 2916   (/)c0 3588   {csn 3774   {cpr 3775   Oncon0 4541    X. cxp 4835   `'ccnv 4836   ran crn 4838    o. ccom 4841    Fn wfn 5408   -->wf 5409   -onto->wfo 5411   -1-1-onto->wf1o 5412   ` cfv 5413  (class class class)co 6040    e. cmpt2 6042   1oc1o 6676   2oc2o 6677    +c ccda 8003   Basecbs 13424  Scalarcsca 13487   TopOpenctopn 13604   Xt_cpt 13621   X_scprds 13624   qTop cqtop 13684    X.s cxps 13687  TopOnctopon 16914   TopSpctps 16916    tX ctx 17545    Homeo chmeo 17738
This theorem is referenced by:  xpstopn  17797
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-er 6864  df-map 6979  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-fi 7374  df-sup 7404  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-fz 11000  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-plusg 13497  df-mulr 13498  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-hom 13508  df-cco 13509  df-rest 13605  df-topn 13606  df-topgen 13622  df-pt 13623  df-prds 13626  df-qtop 13688  df-imas 13689  df-xps 13691  df-top 16918  df-bases 16920  df-topon 16921  df-topsp 16922  df-cn 17245  df-cnp 17246  df-tx 17547  df-hmeo 17740
  Copyright terms: Public domain W3C validator