MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpstopnlem1 Structured version   Unicode version

Theorem xpstopnlem1 19394
Description: The function  F used in xpsval 14522 is a homeomorphism from the binary product topology to the indexed product topology. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
xpstopnlem1.f  |-  F  =  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) )
xpstopnlem1.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
xpstopnlem1.k  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
Assertion
Ref Expression
xpstopnlem1  |-  ( ph  ->  F  e.  ( ( J  tX  K )
Homeo ( Xt_ `  `' ( { J }  +c  { K } ) ) ) )
Distinct variable groups:    x, y, J    x, K, y    ph, x, y    x, X, y    x, Y, y
Allowed substitution hints:    F( x, y)

Proof of Theorem xpstopnlem1
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 xpstopnlem1.j . . . . . . . . . 10  |-  ( ph  ->  J  e.  (TopOn `  X ) )
2 xpstopnlem1.k . . . . . . . . . 10  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
3 txtopon 19176 . . . . . . . . . 10  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( J  tX  K )  e.  (TopOn `  ( X  X.  Y
) ) )
41, 2, 3syl2anc 661 . . . . . . . . 9  |-  ( ph  ->  ( J  tX  K
)  e.  (TopOn `  ( X  X.  Y
) ) )
5 eqid 2443 . . . . . . . . . . . . 13  |-  ( Xt_ `  { <. (/) ,  J >. } )  =  ( Xt_ `  { <. (/) ,  J >. } )
6 0ex 4434 . . . . . . . . . . . . . 14  |-  (/)  e.  _V
76a1i 11 . . . . . . . . . . . . 13  |-  ( ph  -> 
(/)  e.  _V )
85, 7, 1pt1hmeo 19391 . . . . . . . . . . . 12  |-  ( ph  ->  ( z  e.  X  |->  { <. (/) ,  z >. } )  e.  ( J Homeo ( Xt_ `  { <.
(/) ,  J >. } ) ) )
9 hmeocn 19345 . . . . . . . . . . . 12  |-  ( ( z  e.  X  |->  {
<. (/) ,  z >. } )  e.  ( J Homeo ( Xt_ `  { <.
(/) ,  J >. } ) )  ->  (
z  e.  X  |->  {
<. (/) ,  z >. } )  e.  ( J  Cn  ( Xt_ `  { <. (/) ,  J >. } ) ) )
10 cntop2 18857 . . . . . . . . . . . 12  |-  ( ( z  e.  X  |->  {
<. (/) ,  z >. } )  e.  ( J  Cn  ( Xt_ `  { <. (/) ,  J >. } ) )  ->  ( Xt_ `  { <. (/) ,  J >. } )  e.  Top )
118, 9, 103syl 20 . . . . . . . . . . 11  |-  ( ph  ->  ( Xt_ `  { <.
(/) ,  J >. } )  e.  Top )
12 eqid 2443 . . . . . . . . . . . 12  |-  U. ( Xt_ `  { <. (/) ,  J >. } )  =  U. ( Xt_ `  { <. (/)
,  J >. } )
1312toptopon 18550 . . . . . . . . . . 11  |-  ( (
Xt_ `  { <. (/) ,  J >. } )  e.  Top  <->  ( Xt_ `  { <. (/) ,  J >. } )  e.  (TopOn `  U. ( Xt_ `  { <.
(/) ,  J >. } ) ) )
1411, 13sylib 196 . . . . . . . . . 10  |-  ( ph  ->  ( Xt_ `  { <.
(/) ,  J >. } )  e.  (TopOn `  U. ( Xt_ `  { <.
(/) ,  J >. } ) ) )
15 eqid 2443 . . . . . . . . . . . . 13  |-  ( Xt_ `  { <. 1o ,  K >. } )  =  (
Xt_ `  { <. 1o ,  K >. } )
16 1on 6939 . . . . . . . . . . . . . 14  |-  1o  e.  On
1716a1i 11 . . . . . . . . . . . . 13  |-  ( ph  ->  1o  e.  On )
1815, 17, 2pt1hmeo 19391 . . . . . . . . . . . 12  |-  ( ph  ->  ( z  e.  Y  |->  { <. 1o ,  z
>. } )  e.  ( K Homeo ( Xt_ `  { <. 1o ,  K >. } ) ) )
19 hmeocn 19345 . . . . . . . . . . . 12  |-  ( ( z  e.  Y  |->  {
<. 1o ,  z >. } )  e.  ( K Homeo ( Xt_ `  { <. 1o ,  K >. } ) )  ->  (
z  e.  Y  |->  {
<. 1o ,  z >. } )  e.  ( K  Cn  ( Xt_ `  { <. 1o ,  K >. } ) ) )
20 cntop2 18857 . . . . . . . . . . . 12  |-  ( ( z  e.  Y  |->  {
<. 1o ,  z >. } )  e.  ( K  Cn  ( Xt_ `  { <. 1o ,  K >. } ) )  -> 
( Xt_ `  { <. 1o ,  K >. } )  e.  Top )
2118, 19, 203syl 20 . . . . . . . . . . 11  |-  ( ph  ->  ( Xt_ `  { <. 1o ,  K >. } )  e.  Top )
22 eqid 2443 . . . . . . . . . . . 12  |-  U. ( Xt_ `  { <. 1o ,  K >. } )  = 
U. ( Xt_ `  { <. 1o ,  K >. } )
2322toptopon 18550 . . . . . . . . . . 11  |-  ( (
Xt_ `  { <. 1o ,  K >. } )  e. 
Top 
<->  ( Xt_ `  { <. 1o ,  K >. } )  e.  (TopOn `  U. ( Xt_ `  { <. 1o ,  K >. } ) ) )
2421, 23sylib 196 . . . . . . . . . 10  |-  ( ph  ->  ( Xt_ `  { <. 1o ,  K >. } )  e.  (TopOn `  U. ( Xt_ `  { <. 1o ,  K >. } ) ) )
25 txtopon 19176 . . . . . . . . . 10  |-  ( ( ( Xt_ `  { <.
(/) ,  J >. } )  e.  (TopOn `  U. ( Xt_ `  { <.
(/) ,  J >. } ) )  /\  ( Xt_ `  { <. 1o ,  K >. } )  e.  (TopOn `  U. ( Xt_ `  { <. 1o ,  K >. } ) ) )  ->  ( ( Xt_ `  { <. (/) ,  J >. } )  tX  ( Xt_ `  { <. 1o ,  K >. } ) )  e.  (TopOn `  ( U. ( Xt_ `  { <. (/)
,  J >. } )  X.  U. ( Xt_ `  { <. 1o ,  K >. } ) ) ) )
2614, 24, 25syl2anc 661 . . . . . . . . 9  |-  ( ph  ->  ( ( Xt_ `  { <.
(/) ,  J >. } )  tX  ( Xt_ `  { <. 1o ,  K >. } ) )  e.  (TopOn `  ( U. ( Xt_ `  { <. (/)
,  J >. } )  X.  U. ( Xt_ `  { <. 1o ,  K >. } ) ) ) )
27 opeq2 4072 . . . . . . . . . . . . . . . 16  |-  ( z  =  x  ->  <. (/) ,  z
>.  =  <. (/) ,  x >. )
2827sneqd 3901 . . . . . . . . . . . . . . 15  |-  ( z  =  x  ->  { <. (/)
,  z >. }  =  { <. (/) ,  x >. } )
29 eqid 2443 . . . . . . . . . . . . . . 15  |-  ( z  e.  X  |->  { <. (/)
,  z >. } )  =  ( z  e.  X  |->  { <. (/) ,  z
>. } )
30 snex 4545 . . . . . . . . . . . . . . 15  |-  { <. (/)
,  x >. }  e.  _V
3128, 29, 30fvmpt 5786 . . . . . . . . . . . . . 14  |-  ( x  e.  X  ->  (
( z  e.  X  |->  { <. (/) ,  z >. } ) `  x
)  =  { <. (/)
,  x >. } )
32 opeq2 4072 . . . . . . . . . . . . . . . 16  |-  ( z  =  y  ->  <. 1o , 
z >.  =  <. 1o , 
y >. )
3332sneqd 3901 . . . . . . . . . . . . . . 15  |-  ( z  =  y  ->  { <. 1o ,  z >. }  =  { <. 1o ,  y
>. } )
34 eqid 2443 . . . . . . . . . . . . . . 15  |-  ( z  e.  Y  |->  { <. 1o ,  z >. } )  =  ( z  e.  Y  |->  { <. 1o , 
z >. } )
35 snex 4545 . . . . . . . . . . . . . . 15  |-  { <. 1o ,  y >. }  e.  _V
3633, 34, 35fvmpt 5786 . . . . . . . . . . . . . 14  |-  ( y  e.  Y  ->  (
( z  e.  Y  |->  { <. 1o ,  z
>. } ) `  y
)  =  { <. 1o ,  y >. } )
37 opeq12 4073 . . . . . . . . . . . . . 14  |-  ( ( ( ( z  e.  X  |->  { <. (/) ,  z
>. } ) `  x
)  =  { <. (/)
,  x >. }  /\  ( ( z  e.  Y  |->  { <. 1o , 
z >. } ) `  y )  =  { <. 1o ,  y >. } )  ->  <. (
( z  e.  X  |->  { <. (/) ,  z >. } ) `  x
) ,  ( ( z  e.  Y  |->  {
<. 1o ,  z >. } ) `  y
) >.  =  <. { <. (/)
,  x >. } ,  { <. 1o ,  y
>. } >. )
3831, 36, 37syl2an 477 . . . . . . . . . . . . 13  |-  ( ( x  e.  X  /\  y  e.  Y )  -> 
<. ( ( z  e.  X  |->  { <. (/) ,  z
>. } ) `  x
) ,  ( ( z  e.  Y  |->  {
<. 1o ,  z >. } ) `  y
) >.  =  <. { <. (/)
,  x >. } ,  { <. 1o ,  y
>. } >. )
3938mpt2eq3ia 6163 . . . . . . . . . . . 12  |-  ( x  e.  X ,  y  e.  Y  |->  <. (
( z  e.  X  |->  { <. (/) ,  z >. } ) `  x
) ,  ( ( z  e.  Y  |->  {
<. 1o ,  z >. } ) `  y
) >. )  =  ( x  e.  X , 
y  e.  Y  |->  <. { <. (/) ,  x >. } ,  { <. 1o , 
y >. } >. )
40 toponuni 18544 . . . . . . . . . . . . . 14  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
411, 40syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  X  =  U. J
)
42 toponuni 18544 . . . . . . . . . . . . . 14  |-  ( K  e.  (TopOn `  Y
)  ->  Y  =  U. K )
432, 42syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  Y  =  U. K
)
44 mpt2eq12 6158 . . . . . . . . . . . . 13  |-  ( ( X  =  U. J  /\  Y  =  U. K )  ->  (
x  e.  X , 
y  e.  Y  |->  <.
( ( z  e.  X  |->  { <. (/) ,  z
>. } ) `  x
) ,  ( ( z  e.  Y  |->  {
<. 1o ,  z >. } ) `  y
) >. )  =  ( x  e.  U. J ,  y  e.  U. K  |-> 
<. ( ( z  e.  X  |->  { <. (/) ,  z
>. } ) `  x
) ,  ( ( z  e.  Y  |->  {
<. 1o ,  z >. } ) `  y
) >. ) )
4541, 43, 44syl2anc 661 . . . . . . . . . . . 12  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |-> 
<. ( ( z  e.  X  |->  { <. (/) ,  z
>. } ) `  x
) ,  ( ( z  e.  Y  |->  {
<. 1o ,  z >. } ) `  y
) >. )  =  ( x  e.  U. J ,  y  e.  U. K  |-> 
<. ( ( z  e.  X  |->  { <. (/) ,  z
>. } ) `  x
) ,  ( ( z  e.  Y  |->  {
<. 1o ,  z >. } ) `  y
) >. ) )
4639, 45syl5eqr 2489 . . . . . . . . . . 11  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |-> 
<. { <. (/) ,  x >. } ,  { <. 1o , 
y >. } >. )  =  ( x  e. 
U. J ,  y  e.  U. K  |->  <.
( ( z  e.  X  |->  { <. (/) ,  z
>. } ) `  x
) ,  ( ( z  e.  Y  |->  {
<. 1o ,  z >. } ) `  y
) >. ) )
47 eqid 2443 . . . . . . . . . . . 12  |-  U. J  =  U. J
48 eqid 2443 . . . . . . . . . . . 12  |-  U. K  =  U. K
4947, 48, 8, 18txhmeo 19388 . . . . . . . . . . 11  |-  ( ph  ->  ( x  e.  U. J ,  y  e.  U. K  |->  <. ( ( z  e.  X  |->  { <. (/)
,  z >. } ) `
 x ) ,  ( ( z  e.  Y  |->  { <. 1o , 
z >. } ) `  y ) >. )  e.  ( ( J  tX  K ) Homeo ( (
Xt_ `  { <. (/) ,  J >. } )  tX  ( Xt_ `  { <. 1o ,  K >. } ) ) ) )
5046, 49eqeltrd 2517 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |-> 
<. { <. (/) ,  x >. } ,  { <. 1o , 
y >. } >. )  e.  ( ( J  tX  K ) Homeo ( (
Xt_ `  { <. (/) ,  J >. } )  tX  ( Xt_ `  { <. 1o ,  K >. } ) ) ) )
51 hmeocn 19345 . . . . . . . . . 10  |-  ( ( x  e.  X , 
y  e.  Y  |->  <. { <. (/) ,  x >. } ,  { <. 1o , 
y >. } >. )  e.  ( ( J  tX  K ) Homeo ( (
Xt_ `  { <. (/) ,  J >. } )  tX  ( Xt_ `  { <. 1o ,  K >. } ) ) )  ->  ( x  e.  X ,  y  e.  Y  |->  <. { <. (/) ,  x >. } ,  { <. 1o ,  y >. } >. )  e.  ( ( J 
tX  K )  Cn  ( ( Xt_ `  { <.
(/) ,  J >. } )  tX  ( Xt_ `  { <. 1o ,  K >. } ) ) ) )
5250, 51syl 16 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |-> 
<. { <. (/) ,  x >. } ,  { <. 1o , 
y >. } >. )  e.  ( ( J  tX  K )  Cn  (
( Xt_ `  { <. (/)
,  J >. } ) 
tX  ( Xt_ `  { <. 1o ,  K >. } ) ) ) )
53 cnf2 18865 . . . . . . . . 9  |-  ( ( ( J  tX  K
)  e.  (TopOn `  ( X  X.  Y
) )  /\  (
( Xt_ `  { <. (/)
,  J >. } ) 
tX  ( Xt_ `  { <. 1o ,  K >. } ) )  e.  (TopOn `  ( U. ( Xt_ `  { <. (/) ,  J >. } )  X.  U. ( Xt_ `  { <. 1o ,  K >. } ) ) )  /\  ( x  e.  X ,  y  e.  Y  |->  <. { <. (/)
,  x >. } ,  { <. 1o ,  y
>. } >. )  e.  ( ( J  tX  K
)  Cn  ( (
Xt_ `  { <. (/) ,  J >. } )  tX  ( Xt_ `  { <. 1o ,  K >. } ) ) ) )  ->  (
x  e.  X , 
y  e.  Y  |->  <. { <. (/) ,  x >. } ,  { <. 1o , 
y >. } >. ) : ( X  X.  Y ) --> ( U. ( Xt_ `  { <. (/)
,  J >. } )  X.  U. ( Xt_ `  { <. 1o ,  K >. } ) ) )
544, 26, 52, 53syl3anc 1218 . . . . . . . 8  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |-> 
<. { <. (/) ,  x >. } ,  { <. 1o , 
y >. } >. ) : ( X  X.  Y ) --> ( U. ( Xt_ `  { <. (/)
,  J >. } )  X.  U. ( Xt_ `  { <. 1o ,  K >. } ) ) )
55 eqid 2443 . . . . . . . . 9  |-  ( x  e.  X ,  y  e.  Y  |->  <. { <. (/)
,  x >. } ,  { <. 1o ,  y
>. } >. )  =  ( x  e.  X , 
y  e.  Y  |->  <. { <. (/) ,  x >. } ,  { <. 1o , 
y >. } >. )
5655fmpt2 6653 . . . . . . . 8  |-  ( A. x  e.  X  A. y  e.  Y  <. {
<. (/) ,  x >. } ,  { <. 1o , 
y >. } >.  e.  ( U. ( Xt_ `  { <.
(/) ,  J >. } )  X.  U. ( Xt_ `  { <. 1o ,  K >. } ) )  <-> 
( x  e.  X ,  y  e.  Y  |-> 
<. { <. (/) ,  x >. } ,  { <. 1o , 
y >. } >. ) : ( X  X.  Y ) --> ( U. ( Xt_ `  { <. (/)
,  J >. } )  X.  U. ( Xt_ `  { <. 1o ,  K >. } ) ) )
5754, 56sylibr 212 . . . . . . 7  |-  ( ph  ->  A. x  e.  X  A. y  e.  Y  <. { <. (/) ,  x >. } ,  { <. 1o , 
y >. } >.  e.  ( U. ( Xt_ `  { <.
(/) ,  J >. } )  X.  U. ( Xt_ `  { <. 1o ,  K >. } ) ) )
5857r19.21bi 2826 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  A. y  e.  Y  <. { <. (/)
,  x >. } ,  { <. 1o ,  y
>. } >.  e.  ( U. ( Xt_ `  { <.
(/) ,  J >. } )  X.  U. ( Xt_ `  { <. 1o ,  K >. } ) ) )
5958r19.21bi 2826 . . . . 5  |-  ( ( ( ph  /\  x  e.  X )  /\  y  e.  Y )  ->  <. { <. (/)
,  x >. } ,  { <. 1o ,  y
>. } >.  e.  ( U. ( Xt_ `  { <.
(/) ,  J >. } )  X.  U. ( Xt_ `  { <. 1o ,  K >. } ) ) )
6059anasss 647 . . . 4  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  Y ) )  ->  <. { <. (/) ,  x >. } ,  { <. 1o , 
y >. } >.  e.  ( U. ( Xt_ `  { <.
(/) ,  J >. } )  X.  U. ( Xt_ `  { <. 1o ,  K >. } ) ) )
61 eqidd 2444 . . . 4  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |-> 
<. { <. (/) ,  x >. } ,  { <. 1o , 
y >. } >. )  =  ( x  e.  X ,  y  e.  Y  |->  <. { <. (/) ,  x >. } ,  { <. 1o ,  y >. } >. ) )
62 vex 2987 . . . . . . . . 9  |-  x  e. 
_V
63 vex 2987 . . . . . . . . 9  |-  y  e. 
_V
6462, 63op1std 6599 . . . . . . . 8  |-  ( z  =  <. x ,  y
>.  ->  ( 1st `  z
)  =  x )
6562, 63op2ndd 6600 . . . . . . . 8  |-  ( z  =  <. x ,  y
>.  ->  ( 2nd `  z
)  =  y )
6664, 65uneq12d 3523 . . . . . . 7  |-  ( z  =  <. x ,  y
>.  ->  ( ( 1st `  z )  u.  ( 2nd `  z ) )  =  ( x  u.  y ) )
6766mpt2mpt 6194 . . . . . 6  |-  ( z  e.  ( U. ( Xt_ `  { <. (/) ,  J >. } )  X.  U. ( Xt_ `  { <. 1o ,  K >. } ) )  |->  ( ( 1st `  z )  u.  ( 2nd `  z ) ) )  =  ( x  e.  U. ( Xt_ `  { <. (/) ,  J >. } ) ,  y  e. 
U. ( Xt_ `  { <. 1o ,  K >. } )  |->  ( x  u.  y ) )
6867eqcomi 2447 . . . . 5  |-  ( x  e.  U. ( Xt_ `  { <. (/) ,  J >. } ) ,  y  e. 
U. ( Xt_ `  { <. 1o ,  K >. } )  |->  ( x  u.  y ) )  =  ( z  e.  ( U. ( Xt_ `  { <.
(/) ,  J >. } )  X.  U. ( Xt_ `  { <. 1o ,  K >. } ) ) 
|->  ( ( 1st `  z
)  u.  ( 2nd `  z ) ) )
6968a1i 11 . . . 4  |-  ( ph  ->  ( x  e.  U. ( Xt_ `  { <. (/)
,  J >. } ) ,  y  e.  U. ( Xt_ `  { <. 1o ,  K >. } ) 
|->  ( x  u.  y
) )  =  ( z  e.  ( U. ( Xt_ `  { <. (/)
,  J >. } )  X.  U. ( Xt_ `  { <. 1o ,  K >. } ) )  |->  ( ( 1st `  z
)  u.  ( 2nd `  z ) ) ) )
7030, 35op1std 6599 . . . . . 6  |-  ( z  =  <. { <. (/) ,  x >. } ,  { <. 1o ,  y >. } >.  -> 
( 1st `  z
)  =  { <. (/)
,  x >. } )
7130, 35op2ndd 6600 . . . . . 6  |-  ( z  =  <. { <. (/) ,  x >. } ,  { <. 1o ,  y >. } >.  -> 
( 2nd `  z
)  =  { <. 1o ,  y >. } )
7270, 71uneq12d 3523 . . . . 5  |-  ( z  =  <. { <. (/) ,  x >. } ,  { <. 1o ,  y >. } >.  -> 
( ( 1st `  z
)  u.  ( 2nd `  z ) )  =  ( { <. (/) ,  x >. }  u.  { <. 1o ,  y >. } ) )
73 xpscg 14508 . . . . . . 7  |-  ( ( x  e.  _V  /\  y  e.  _V )  ->  `' ( { x }  +c  { y } )  =  { <. (/)
,  x >. ,  <. 1o ,  y >. } )
7462, 63, 73mp2an 672 . . . . . 6  |-  `' ( { x }  +c  { y } )  =  { <. (/) ,  x >. , 
<. 1o ,  y >. }
75 df-pr 3892 . . . . . 6  |-  { <. (/)
,  x >. ,  <. 1o ,  y >. }  =  ( { <. (/) ,  x >. }  u.  { <. 1o , 
y >. } )
7674, 75eqtri 2463 . . . . 5  |-  `' ( { x }  +c  { y } )  =  ( { <. (/) ,  x >. }  u.  { <. 1o ,  y >. } )
7772, 76syl6eqr 2493 . . . 4  |-  ( z  =  <. { <. (/) ,  x >. } ,  { <. 1o ,  y >. } >.  -> 
( ( 1st `  z
)  u.  ( 2nd `  z ) )  =  `' ( { x }  +c  { y } ) )
7860, 61, 69, 77fmpt2co 6668 . . 3  |-  ( ph  ->  ( ( x  e. 
U. ( Xt_ `  { <.
(/) ,  J >. } ) ,  y  e. 
U. ( Xt_ `  { <. 1o ,  K >. } )  |->  ( x  u.  y ) )  o.  ( x  e.  X ,  y  e.  Y  |-> 
<. { <. (/) ,  x >. } ,  { <. 1o , 
y >. } >. )
)  =  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) )
79 xpstopnlem1.f . . 3  |-  F  =  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) )
8078, 79syl6reqr 2494 . 2  |-  ( ph  ->  F  =  ( ( x  e.  U. ( Xt_ `  { <. (/) ,  J >. } ) ,  y  e.  U. ( Xt_ `  { <. 1o ,  K >. } )  |->  ( x  u.  y ) )  o.  ( x  e.  X ,  y  e.  Y  |->  <. { <. (/) ,  x >. } ,  { <. 1o ,  y >. } >. ) ) )
81 eqid 2443 . . . . 5  |-  U. ( Xt_ `  ( `' ( { J }  +c  { K } )  |`  { (/) } ) )  =  U. ( Xt_ `  ( `' ( { J }  +c  { K } )  |`  { (/) } ) )
82 eqid 2443 . . . . 5  |-  U. ( Xt_ `  ( `' ( { J }  +c  { K } )  |`  { 1o } ) )  =  U. ( Xt_ `  ( `' ( { J }  +c  { K } )  |`  { 1o } ) )
83 eqid 2443 . . . . 5  |-  ( Xt_ `  `' ( { J }  +c  { K }
) )  =  (
Xt_ `  `' ( { J }  +c  { K } ) )
84 eqid 2443 . . . . 5  |-  ( Xt_ `  ( `' ( { J }  +c  { K } )  |`  { (/) } ) )  =  (
Xt_ `  ( `' ( { J }  +c  { K } )  |`  { (/) } ) )
85 eqid 2443 . . . . 5  |-  ( Xt_ `  ( `' ( { J }  +c  { K } )  |`  { 1o } ) )  =  ( Xt_ `  ( `' ( { J }  +c  { K }
)  |`  { 1o }
) )
86 eqid 2443 . . . . 5  |-  ( x  e.  U. ( Xt_ `  ( `' ( { J }  +c  { K } )  |`  { (/) } ) ) ,  y  e.  U. ( Xt_ `  ( `' ( { J }  +c  { K } )  |`  { 1o } ) )  |->  ( x  u.  y ) )  =  ( x  e.  U. ( Xt_ `  ( `' ( { J }  +c  { K } )  |`  { (/) } ) ) ,  y  e.  U. ( Xt_ `  ( `' ( { J }  +c  { K } )  |`  { 1o } ) )  |->  ( x  u.  y ) )
87 2on 6940 . . . . . 6  |-  2o  e.  On
8887a1i 11 . . . . 5  |-  ( ph  ->  2o  e.  On )
89 topontop 18543 . . . . . . 7  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
901, 89syl 16 . . . . . 6  |-  ( ph  ->  J  e.  Top )
91 topontop 18543 . . . . . . 7  |-  ( K  e.  (TopOn `  Y
)  ->  K  e.  Top )
922, 91syl 16 . . . . . 6  |-  ( ph  ->  K  e.  Top )
93 xpscf 14516 . . . . . 6  |-  ( `' ( { J }  +c  { K } ) : 2o --> Top  <->  ( J  e.  Top  /\  K  e. 
Top ) )
9490, 92, 93sylanbrc 664 . . . . 5  |-  ( ph  ->  `' ( { J }  +c  { K }
) : 2o --> Top )
95 df2o3 6945 . . . . . . 7  |-  2o  =  { (/) ,  1o }
96 df-pr 3892 . . . . . . 7  |-  { (/) ,  1o }  =  ( { (/) }  u.  { 1o } )
9795, 96eqtri 2463 . . . . . 6  |-  2o  =  ( { (/) }  u.  { 1o } )
9897a1i 11 . . . . 5  |-  ( ph  ->  2o  =  ( {
(/) }  u.  { 1o } ) )
99 1n0 6947 . . . . . . 7  |-  1o  =/=  (/)
10099necomi 2706 . . . . . 6  |-  (/)  =/=  1o
101 disjsn2 3949 . . . . . 6  |-  ( (/)  =/=  1o  ->  ( { (/)
}  i^i  { 1o } )  =  (/) )
102100, 101mp1i 12 . . . . 5  |-  ( ph  ->  ( { (/) }  i^i  { 1o } )  =  (/) )
10381, 82, 83, 84, 85, 86, 88, 94, 98, 102ptunhmeo 19393 . . . 4  |-  ( ph  ->  ( x  e.  U. ( Xt_ `  ( `' ( { J }  +c  { K } )  |`  { (/) } ) ) ,  y  e.  U. ( Xt_ `  ( `' ( { J }  +c  { K } )  |`  { 1o } ) )  |->  ( x  u.  y ) )  e.  ( ( ( Xt_ `  ( `' ( { J }  +c  { K } )  |`  { (/) } ) )  tX  ( Xt_ `  ( `' ( { J }  +c  { K } )  |`  { 1o } ) ) ) Homeo ( Xt_ `  `' ( { J }  +c  { K } ) ) ) )
104 xpscfn 14509 . . . . . . . . . 10  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  `' ( { J }  +c  { K } )  Fn  2o )
1051, 2, 104syl2anc 661 . . . . . . . . 9  |-  ( ph  ->  `' ( { J }  +c  { K }
)  Fn  2o )
1066prid1 3995 . . . . . . . . . 10  |-  (/)  e.  { (/)
,  1o }
107106, 95eleqtrri 2516 . . . . . . . . 9  |-  (/)  e.  2o
108 fnressn 5906 . . . . . . . . 9  |-  ( ( `' ( { J }  +c  { K }
)  Fn  2o  /\  (/) 
e.  2o )  -> 
( `' ( { J }  +c  { K } )  |`  { (/) } )  =  { <. (/)
,  ( `' ( { J }  +c  { K } ) `  (/) ) >. } )
109105, 107, 108sylancl 662 . . . . . . . 8  |-  ( ph  ->  ( `' ( { J }  +c  { K } )  |`  { (/) } )  =  { <. (/)
,  ( `' ( { J }  +c  { K } ) `  (/) ) >. } )
110 xpsc0 14510 . . . . . . . . . . 11  |-  ( J  e.  (TopOn `  X
)  ->  ( `' ( { J }  +c  { K } ) `  (/) )  =  J )
1111, 110syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( `' ( { J }  +c  { K } ) `  (/) )  =  J )
112111opeq2d 4078 . . . . . . . . 9  |-  ( ph  -> 
<. (/) ,  ( `' ( { J }  +c  { K } ) `
 (/) ) >.  =  <. (/)
,  J >. )
113112sneqd 3901 . . . . . . . 8  |-  ( ph  ->  { <. (/) ,  ( `' ( { J }  +c  { K } ) `
 (/) ) >. }  =  { <. (/) ,  J >. } )
114109, 113eqtrd 2475 . . . . . . 7  |-  ( ph  ->  ( `' ( { J }  +c  { K } )  |`  { (/) } )  =  { <. (/)
,  J >. } )
115114fveq2d 5707 . . . . . 6  |-  ( ph  ->  ( Xt_ `  ( `' ( { J }  +c  { K }
)  |`  { (/) } ) )  =  ( Xt_ `  { <. (/) ,  J >. } ) )
116115unieqd 4113 . . . . 5  |-  ( ph  ->  U. ( Xt_ `  ( `' ( { J }  +c  { K }
)  |`  { (/) } ) )  =  U. ( Xt_ `  { <. (/) ,  J >. } ) )
11716elexi 2994 . . . . . . . . . . 11  |-  1o  e.  _V
118117prid2 3996 . . . . . . . . . 10  |-  1o  e.  {
(/) ,  1o }
119118, 95eleqtrri 2516 . . . . . . . . 9  |-  1o  e.  2o
120 fnressn 5906 . . . . . . . . 9  |-  ( ( `' ( { J }  +c  { K }
)  Fn  2o  /\  1o  e.  2o )  -> 
( `' ( { J }  +c  { K } )  |`  { 1o } )  =  { <. 1o ,  ( `' ( { J }  +c  { K } ) `
 1o ) >. } )
121105, 119, 120sylancl 662 . . . . . . . 8  |-  ( ph  ->  ( `' ( { J }  +c  { K } )  |`  { 1o } )  =  { <. 1o ,  ( `' ( { J }  +c  { K } ) `
 1o ) >. } )
122 xpsc1 14511 . . . . . . . . . . 11  |-  ( K  e.  (TopOn `  Y
)  ->  ( `' ( { J }  +c  { K } ) `  1o )  =  K
)
1232, 122syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( `' ( { J }  +c  { K } ) `  1o )  =  K )
124123opeq2d 4078 . . . . . . . . 9  |-  ( ph  -> 
<. 1o ,  ( `' ( { J }  +c  { K } ) `
 1o ) >.  =  <. 1o ,  K >. )
125124sneqd 3901 . . . . . . . 8  |-  ( ph  ->  { <. 1o ,  ( `' ( { J }  +c  { K }
) `  1o ) >. }  =  { <. 1o ,  K >. } )
126121, 125eqtrd 2475 . . . . . . 7  |-  ( ph  ->  ( `' ( { J }  +c  { K } )  |`  { 1o } )  =  { <. 1o ,  K >. } )
127126fveq2d 5707 . . . . . 6  |-  ( ph  ->  ( Xt_ `  ( `' ( { J }  +c  { K }
)  |`  { 1o }
) )  =  (
Xt_ `  { <. 1o ,  K >. } ) )
128127unieqd 4113 . . . . 5  |-  ( ph  ->  U. ( Xt_ `  ( `' ( { J }  +c  { K }
)  |`  { 1o }
) )  =  U. ( Xt_ `  { <. 1o ,  K >. } ) )
129 eqidd 2444 . . . . 5  |-  ( ph  ->  ( x  u.  y
)  =  ( x  u.  y ) )
130116, 128, 129mpt2eq123dv 6160 . . . 4  |-  ( ph  ->  ( x  e.  U. ( Xt_ `  ( `' ( { J }  +c  { K } )  |`  { (/) } ) ) ,  y  e.  U. ( Xt_ `  ( `' ( { J }  +c  { K } )  |`  { 1o } ) )  |->  ( x  u.  y ) )  =  ( x  e.  U. ( Xt_ `  { <. (/)
,  J >. } ) ,  y  e.  U. ( Xt_ `  { <. 1o ,  K >. } ) 
|->  ( x  u.  y
) ) )
131115, 127oveq12d 6121 . . . . 5  |-  ( ph  ->  ( ( Xt_ `  ( `' ( { J }  +c  { K }
)  |`  { (/) } ) )  tX  ( Xt_ `  ( `' ( { J }  +c  { K } )  |`  { 1o } ) ) )  =  ( ( Xt_ `  { <. (/) ,  J >. } )  tX  ( Xt_ `  { <. 1o ,  K >. } ) ) )
132131oveq1d 6118 . . . 4  |-  ( ph  ->  ( ( ( Xt_ `  ( `' ( { J }  +c  { K } )  |`  { (/) } ) )  tX  ( Xt_ `  ( `' ( { J }  +c  { K } )  |`  { 1o } ) ) ) Homeo ( Xt_ `  `' ( { J }  +c  { K } ) ) )  =  ( ( ( Xt_ `  { <.
(/) ,  J >. } )  tX  ( Xt_ `  { <. 1o ,  K >. } ) ) Homeo (
Xt_ `  `' ( { J }  +c  { K } ) ) ) )
133103, 130, 1323eltr3d 2523 . . 3  |-  ( ph  ->  ( x  e.  U. ( Xt_ `  { <. (/)
,  J >. } ) ,  y  e.  U. ( Xt_ `  { <. 1o ,  K >. } ) 
|->  ( x  u.  y
) )  e.  ( ( ( Xt_ `  { <.
(/) ,  J >. } )  tX  ( Xt_ `  { <. 1o ,  K >. } ) ) Homeo (
Xt_ `  `' ( { J }  +c  { K } ) ) ) )
134 hmeoco 19357 . . 3  |-  ( ( ( x  e.  X ,  y  e.  Y  |-> 
<. { <. (/) ,  x >. } ,  { <. 1o , 
y >. } >. )  e.  ( ( J  tX  K ) Homeo ( (
Xt_ `  { <. (/) ,  J >. } )  tX  ( Xt_ `  { <. 1o ,  K >. } ) ) )  /\  ( x  e.  U. ( Xt_ `  { <. (/) ,  J >. } ) ,  y  e. 
U. ( Xt_ `  { <. 1o ,  K >. } )  |->  ( x  u.  y ) )  e.  ( ( ( Xt_ `  { <. (/) ,  J >. } )  tX  ( Xt_ `  { <. 1o ,  K >. } ) ) Homeo (
Xt_ `  `' ( { J }  +c  { K } ) ) ) )  ->  ( (
x  e.  U. ( Xt_ `  { <. (/) ,  J >. } ) ,  y  e.  U. ( Xt_ `  { <. 1o ,  K >. } )  |->  ( x  u.  y ) )  o.  ( x  e.  X ,  y  e.  Y  |->  <. { <. (/) ,  x >. } ,  { <. 1o ,  y >. } >. ) )  e.  ( ( J  tX  K )
Homeo ( Xt_ `  `' ( { J }  +c  { K } ) ) ) )
13550, 133, 134syl2anc 661 . 2  |-  ( ph  ->  ( ( x  e. 
U. ( Xt_ `  { <.
(/) ,  J >. } ) ,  y  e. 
U. ( Xt_ `  { <. 1o ,  K >. } )  |->  ( x  u.  y ) )  o.  ( x  e.  X ,  y  e.  Y  |-> 
<. { <. (/) ,  x >. } ,  { <. 1o , 
y >. } >. )
)  e.  ( ( J  tX  K )
Homeo ( Xt_ `  `' ( { J }  +c  { K } ) ) ) )
13680, 135eqeltrd 2517 1  |-  ( ph  ->  F  e.  ( ( J  tX  K )
Homeo ( Xt_ `  `' ( { J }  +c  { K } ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2618   A.wral 2727   _Vcvv 2984    u. cun 3338    i^i cin 3339   (/)c0 3649   {csn 3889   {cpr 3891   <.cop 3895   U.cuni 4103    e. cmpt 4362   Oncon0 4731    X. cxp 4850   `'ccnv 4851    |` cres 4854    o. ccom 4856    Fn wfn 5425   -->wf 5426   ` cfv 5430  (class class class)co 6103    e. cmpt2 6105   1stc1st 6587   2ndc2nd 6588   1oc1o 6925   2oc2o 6926    +c ccda 8348   Xt_cpt 14389   Topctop 18510  TopOnctopon 18511    Cn ccn 18840    tX ctx 19145   Homeochmeo 19338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4415  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543  ax-un 6384
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-ral 2732  df-rex 2733  df-reu 2734  df-rab 2736  df-v 2986  df-sbc 3199  df-csb 3301  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-pss 3356  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-tp 3894  df-op 3896  df-uni 4104  df-int 4141  df-iun 4185  df-iin 4186  df-br 4305  df-opab 4363  df-mpt 4364  df-tr 4398  df-eprel 4644  df-id 4648  df-po 4653  df-so 4654  df-fr 4691  df-we 4693  df-ord 4734  df-on 4735  df-lim 4736  df-suc 4737  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5393  df-fun 5432  df-fn 5433  df-f 5434  df-f1 5435  df-fo 5436  df-f1o 5437  df-fv 5438  df-ov 6106  df-oprab 6107  df-mpt2 6108  df-om 6489  df-1st 6589  df-2nd 6590  df-recs 6844  df-rdg 6878  df-1o 6932  df-2o 6933  df-oadd 6936  df-er 7113  df-map 7228  df-ixp 7276  df-en 7323  df-dom 7324  df-sdom 7325  df-fin 7326  df-fi 7673  df-cda 8349  df-topgen 14394  df-pt 14395  df-top 18515  df-bases 18517  df-topon 18518  df-cn 18843  df-cnp 18844  df-tx 19147  df-hmeo 19340
This theorem is referenced by:  xpstopnlem2  19396
  Copyright terms: Public domain W3C validator