MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsspwOLD Structured version   Unicode version

Theorem xpsspwOLD 5107
Description: A Cartesian product is included in the power of the power of the union of its arguments. (Contributed by NM, 13-Sep-2006.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
xpsspwOLD  |-  ( A  X.  B )  C_  ~P ~P ( A  u.  B )

Proof of Theorem xpsspwOLD
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relxp 5100 . 2  |-  Rel  ( A  X.  B )
2 opelxp 5019 . . 3  |-  ( <.
x ,  y >.  e.  ( A  X.  B
)  <->  ( x  e.  A  /\  y  e.  B ) )
3 snssi 4159 . . . . . . . 8  |-  ( x  e.  A  ->  { x }  C_  A )
4 ssun3 3654 . . . . . . . 8  |-  ( { x }  C_  A  ->  { x }  C_  ( A  u.  B
) )
53, 4syl 16 . . . . . . 7  |-  ( x  e.  A  ->  { x }  C_  ( A  u.  B ) )
6 snex 4678 . . . . . . . 8  |-  { x }  e.  _V
76elpw 4003 . . . . . . 7  |-  ( { x }  e.  ~P ( A  u.  B
)  <->  { x }  C_  ( A  u.  B
) )
85, 7sylibr 212 . . . . . 6  |-  ( x  e.  A  ->  { x }  e.  ~P ( A  u.  B )
)
98adantr 465 . . . . 5  |-  ( ( x  e.  A  /\  y  e.  B )  ->  { x }  e.  ~P ( A  u.  B
) )
10 df-pr 4017 . . . . . . 7  |-  { x ,  y }  =  ( { x }  u.  { y } )
11 snssi 4159 . . . . . . . . . 10  |-  ( y  e.  B  ->  { y }  C_  B )
12 ssun4 3655 . . . . . . . . . 10  |-  ( { y }  C_  B  ->  { y }  C_  ( A  u.  B
) )
1311, 12syl 16 . . . . . . . . 9  |-  ( y  e.  B  ->  { y }  C_  ( A  u.  B ) )
145, 13anim12i 566 . . . . . . . 8  |-  ( ( x  e.  A  /\  y  e.  B )  ->  ( { x }  C_  ( A  u.  B
)  /\  { y }  C_  ( A  u.  B ) ) )
15 unss 3663 . . . . . . . 8  |-  ( ( { x }  C_  ( A  u.  B
)  /\  { y }  C_  ( A  u.  B ) )  <->  ( {
x }  u.  {
y } )  C_  ( A  u.  B
) )
1614, 15sylib 196 . . . . . . 7  |-  ( ( x  e.  A  /\  y  e.  B )  ->  ( { x }  u.  { y } ) 
C_  ( A  u.  B ) )
1710, 16syl5eqss 3533 . . . . . 6  |-  ( ( x  e.  A  /\  y  e.  B )  ->  { x ,  y }  C_  ( A  u.  B ) )
18 zfpair2 4677 . . . . . . 7  |-  { x ,  y }  e.  _V
1918elpw 4003 . . . . . 6  |-  ( { x ,  y }  e.  ~P ( A  u.  B )  <->  { x ,  y }  C_  ( A  u.  B
) )
2017, 19sylibr 212 . . . . 5  |-  ( ( x  e.  A  /\  y  e.  B )  ->  { x ,  y }  e.  ~P ( A  u.  B )
)
219, 20jca 532 . . . 4  |-  ( ( x  e.  A  /\  y  e.  B )  ->  ( { x }  e.  ~P ( A  u.  B )  /\  {
x ,  y }  e.  ~P ( A  u.  B ) ) )
22 prex 4679 . . . . . 6  |-  { {
x } ,  {
x ,  y } }  e.  _V
2322elpw 4003 . . . . 5  |-  ( { { x } ,  { x ,  y } }  e.  ~P ~P ( A  u.  B
)  <->  { { x } ,  { x ,  y } }  C_  ~P ( A  u.  B
) )
24 vex 3098 . . . . . . 7  |-  x  e. 
_V
25 vex 3098 . . . . . . 7  |-  y  e. 
_V
2624, 25dfop 4201 . . . . . 6  |-  <. x ,  y >.  =  { { x } ,  { x ,  y } }
2726eleq1i 2520 . . . . 5  |-  ( <.
x ,  y >.  e.  ~P ~P ( A  u.  B )  <->  { { x } ,  { x ,  y } }  e.  ~P ~P ( A  u.  B ) )
286, 18prss 4169 . . . . 5  |-  ( ( { x }  e.  ~P ( A  u.  B
)  /\  { x ,  y }  e.  ~P ( A  u.  B
) )  <->  { { x } ,  { x ,  y } }  C_ 
~P ( A  u.  B ) )
2923, 27, 283bitr4ri 278 . . . 4  |-  ( ( { x }  e.  ~P ( A  u.  B
)  /\  { x ,  y }  e.  ~P ( A  u.  B
) )  <->  <. x ,  y >.  e.  ~P ~P ( A  u.  B
) )
3021, 29sylib 196 . . 3  |-  ( ( x  e.  A  /\  y  e.  B )  -> 
<. x ,  y >.  e.  ~P ~P ( A  u.  B ) )
312, 30sylbi 195 . 2  |-  ( <.
x ,  y >.  e.  ( A  X.  B
)  ->  <. x ,  y >.  e.  ~P ~P ( A  u.  B
) )
321, 31relssi 5084 1  |-  ( A  X.  B )  C_  ~P ~P ( A  u.  B )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 369    e. wcel 1804    u. cun 3459    C_ wss 3461   ~Pcpw 3997   {csn 4014   {cpr 4016   <.cop 4020    X. cxp 4987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-sep 4558  ax-nul 4566  ax-pr 4676
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-ral 2798  df-rex 2799  df-rab 2802  df-v 3097  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-op 4021  df-opab 4496  df-xp 4995  df-rel 4996
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator