MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsspw Structured version   Unicode version

Theorem xpsspw 4937
Description: A Cartesian product is included in the power of the power of the union of its arguments. (Contributed by NM, 13-Sep-2006.)
Assertion
Ref Expression
xpsspw  |-  ( A  X.  B )  C_  ~P ~P ( A  u.  B )

Proof of Theorem xpsspw
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relxp 4931 . 2  |-  Rel  ( A  X.  B )
2 opelxp 4853 . . 3  |-  ( <.
x ,  y >.  e.  ( A  X.  B
)  <->  ( x  e.  A  /\  y  e.  B ) )
3 snssi 4116 . . . . . . . 8  |-  ( x  e.  A  ->  { x }  C_  A )
4 ssun3 3608 . . . . . . . 8  |-  ( { x }  C_  A  ->  { x }  C_  ( A  u.  B
) )
53, 4syl 17 . . . . . . 7  |-  ( x  e.  A  ->  { x }  C_  ( A  u.  B ) )
6 snex 4632 . . . . . . . 8  |-  { x }  e.  _V
76elpw 3961 . . . . . . 7  |-  ( { x }  e.  ~P ( A  u.  B
)  <->  { x }  C_  ( A  u.  B
) )
85, 7sylibr 212 . . . . . 6  |-  ( x  e.  A  ->  { x }  e.  ~P ( A  u.  B )
)
98adantr 463 . . . . 5  |-  ( ( x  e.  A  /\  y  e.  B )  ->  { x }  e.  ~P ( A  u.  B
) )
10 df-pr 3975 . . . . . . 7  |-  { x ,  y }  =  ( { x }  u.  { y } )
11 snssi 4116 . . . . . . . . . 10  |-  ( y  e.  B  ->  { y }  C_  B )
12 ssun4 3609 . . . . . . . . . 10  |-  ( { y }  C_  B  ->  { y }  C_  ( A  u.  B
) )
1311, 12syl 17 . . . . . . . . 9  |-  ( y  e.  B  ->  { y }  C_  ( A  u.  B ) )
145, 13anim12i 564 . . . . . . . 8  |-  ( ( x  e.  A  /\  y  e.  B )  ->  ( { x }  C_  ( A  u.  B
)  /\  { y }  C_  ( A  u.  B ) ) )
15 unss 3617 . . . . . . . 8  |-  ( ( { x }  C_  ( A  u.  B
)  /\  { y }  C_  ( A  u.  B ) )  <->  ( {
x }  u.  {
y } )  C_  ( A  u.  B
) )
1614, 15sylib 196 . . . . . . 7  |-  ( ( x  e.  A  /\  y  e.  B )  ->  ( { x }  u.  { y } ) 
C_  ( A  u.  B ) )
1710, 16syl5eqss 3486 . . . . . 6  |-  ( ( x  e.  A  /\  y  e.  B )  ->  { x ,  y }  C_  ( A  u.  B ) )
18 zfpair2 4631 . . . . . . 7  |-  { x ,  y }  e.  _V
1918elpw 3961 . . . . . 6  |-  ( { x ,  y }  e.  ~P ( A  u.  B )  <->  { x ,  y }  C_  ( A  u.  B
) )
2017, 19sylibr 212 . . . . 5  |-  ( ( x  e.  A  /\  y  e.  B )  ->  { x ,  y }  e.  ~P ( A  u.  B )
)
219, 20jca 530 . . . 4  |-  ( ( x  e.  A  /\  y  e.  B )  ->  ( { x }  e.  ~P ( A  u.  B )  /\  {
x ,  y }  e.  ~P ( A  u.  B ) ) )
22 prex 4633 . . . . . 6  |-  { {
x } ,  {
x ,  y } }  e.  _V
2322elpw 3961 . . . . 5  |-  ( { { x } ,  { x ,  y } }  e.  ~P ~P ( A  u.  B
)  <->  { { x } ,  { x ,  y } }  C_  ~P ( A  u.  B
) )
24 vex 3062 . . . . . . 7  |-  x  e. 
_V
25 vex 3062 . . . . . . 7  |-  y  e. 
_V
2624, 25dfop 4158 . . . . . 6  |-  <. x ,  y >.  =  { { x } ,  { x ,  y } }
2726eleq1i 2479 . . . . 5  |-  ( <.
x ,  y >.  e.  ~P ~P ( A  u.  B )  <->  { { x } ,  { x ,  y } }  e.  ~P ~P ( A  u.  B ) )
286, 18prss 4126 . . . . 5  |-  ( ( { x }  e.  ~P ( A  u.  B
)  /\  { x ,  y }  e.  ~P ( A  u.  B
) )  <->  { { x } ,  { x ,  y } }  C_ 
~P ( A  u.  B ) )
2923, 27, 283bitr4ri 278 . . . 4  |-  ( ( { x }  e.  ~P ( A  u.  B
)  /\  { x ,  y }  e.  ~P ( A  u.  B
) )  <->  <. x ,  y >.  e.  ~P ~P ( A  u.  B
) )
3021, 29sylib 196 . . 3  |-  ( ( x  e.  A  /\  y  e.  B )  -> 
<. x ,  y >.  e.  ~P ~P ( A  u.  B ) )
312, 30sylbi 195 . 2  |-  ( <.
x ,  y >.  e.  ( A  X.  B
)  ->  <. x ,  y >.  e.  ~P ~P ( A  u.  B
) )
321, 31relssi 4915 1  |-  ( A  X.  B )  C_  ~P ~P ( A  u.  B )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 367    e. wcel 1842    u. cun 3412    C_ wss 3414   ~Pcpw 3955   {csn 3972   {cpr 3974   <.cop 3978    X. cxp 4821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4517  ax-nul 4525  ax-pr 4630
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2759  df-rex 2760  df-rab 2763  df-v 3061  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-op 3979  df-opab 4454  df-xp 4829  df-rel 4830
This theorem is referenced by:  unixpss  4938  xpexg  6584  rankxpu  8326  wunxp  9132  gruxp  9215
  Copyright terms: Public domain W3C validator