MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsspw Structured version   Unicode version

Theorem xpsspw 5056
Description: A Cartesian product is included in the power of the power of the union of its arguments. (Contributed by NM, 13-Sep-2006.)
Assertion
Ref Expression
xpsspw  |-  ( A  X.  B )  C_  ~P ~P ( A  u.  B )

Proof of Theorem xpsspw
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxpi 4959 . . . 4  |-  ( z  e.  ( A  X.  B )  ->  E. x E. y ( z  = 
<. x ,  y >.  /\  ( x  e.  A  /\  y  e.  B
) ) )
2 vex 3075 . . . . . . . 8  |-  x  e. 
_V
3 vex 3075 . . . . . . . 8  |-  y  e. 
_V
42, 3dfop 4161 . . . . . . 7  |-  <. x ,  y >.  =  { { x } ,  { x ,  y } }
5 snssi 4120 . . . . . . . . . . . . 13  |-  ( x  e.  A  ->  { x }  C_  A )
6 ssun3 3624 . . . . . . . . . . . . 13  |-  ( { x }  C_  A  ->  { x }  C_  ( A  u.  B
) )
75, 6syl 16 . . . . . . . . . . . 12  |-  ( x  e.  A  ->  { x }  C_  ( A  u.  B ) )
87adantr 465 . . . . . . . . . . 11  |-  ( ( x  e.  A  /\  y  e.  B )  ->  { x }  C_  ( A  u.  B
) )
9 sseq1 3480 . . . . . . . . . . 11  |-  ( z  =  { x }  ->  ( z  C_  ( A  u.  B )  <->  { x }  C_  ( A  u.  B )
) )
108, 9syl5ibrcom 222 . . . . . . . . . 10  |-  ( ( x  e.  A  /\  y  e.  B )  ->  ( z  =  {
x }  ->  z  C_  ( A  u.  B
) ) )
11 df-pr 3983 . . . . . . . . . . . 12  |-  { x ,  y }  =  ( { x }  u.  { y } )
12 snssi 4120 . . . . . . . . . . . . . . 15  |-  ( y  e.  B  ->  { y }  C_  B )
13 ssun4 3625 . . . . . . . . . . . . . . 15  |-  ( { y }  C_  B  ->  { y }  C_  ( A  u.  B
) )
1412, 13syl 16 . . . . . . . . . . . . . 14  |-  ( y  e.  B  ->  { y }  C_  ( A  u.  B ) )
157, 14anim12i 566 . . . . . . . . . . . . 13  |-  ( ( x  e.  A  /\  y  e.  B )  ->  ( { x }  C_  ( A  u.  B
)  /\  { y }  C_  ( A  u.  B ) ) )
16 unss 3633 . . . . . . . . . . . . 13  |-  ( ( { x }  C_  ( A  u.  B
)  /\  { y }  C_  ( A  u.  B ) )  <->  ( {
x }  u.  {
y } )  C_  ( A  u.  B
) )
1715, 16sylib 196 . . . . . . . . . . . 12  |-  ( ( x  e.  A  /\  y  e.  B )  ->  ( { x }  u.  { y } ) 
C_  ( A  u.  B ) )
1811, 17syl5eqss 3503 . . . . . . . . . . 11  |-  ( ( x  e.  A  /\  y  e.  B )  ->  { x ,  y }  C_  ( A  u.  B ) )
19 sseq1 3480 . . . . . . . . . . 11  |-  ( z  =  { x ,  y }  ->  (
z  C_  ( A  u.  B )  <->  { x ,  y }  C_  ( A  u.  B
) ) )
2018, 19syl5ibrcom 222 . . . . . . . . . 10  |-  ( ( x  e.  A  /\  y  e.  B )  ->  ( z  =  {
x ,  y }  ->  z  C_  ( A  u.  B )
) )
2110, 20jaod 380 . . . . . . . . 9  |-  ( ( x  e.  A  /\  y  e.  B )  ->  ( ( z  =  { x }  \/  z  =  { x ,  y } )  ->  z  C_  ( A  u.  B )
) )
22 vex 3075 . . . . . . . . . 10  |-  z  e. 
_V
2322elpr 3998 . . . . . . . . 9  |-  ( z  e.  { { x } ,  { x ,  y } }  <->  ( z  =  { x }  \/  z  =  { x ,  y } ) )
24 selpw 3970 . . . . . . . . 9  |-  ( z  e.  ~P ( A  u.  B )  <->  z  C_  ( A  u.  B
) )
2521, 23, 243imtr4g 270 . . . . . . . 8  |-  ( ( x  e.  A  /\  y  e.  B )  ->  ( z  e.  { { x } ,  { x ,  y } }  ->  z  e.  ~P ( A  u.  B ) ) )
2625ssrdv 3465 . . . . . . 7  |-  ( ( x  e.  A  /\  y  e.  B )  ->  { { x } ,  { x ,  y } }  C_  ~P ( A  u.  B
) )
274, 26syl5eqss 3503 . . . . . 6  |-  ( ( x  e.  A  /\  y  e.  B )  -> 
<. x ,  y >.  C_ 
~P ( A  u.  B ) )
28 sseq1 3480 . . . . . . 7  |-  ( z  =  <. x ,  y
>.  ->  ( z  C_  ~P ( A  u.  B
)  <->  <. x ,  y
>.  C_  ~P ( A  u.  B ) ) )
2928biimpar 485 . . . . . 6  |-  ( ( z  =  <. x ,  y >.  /\  <. x ,  y >.  C_  ~P ( A  u.  B
) )  ->  z  C_ 
~P ( A  u.  B ) )
3027, 29sylan2 474 . . . . 5  |-  ( ( z  =  <. x ,  y >.  /\  (
x  e.  A  /\  y  e.  B )
)  ->  z  C_  ~P ( A  u.  B
) )
3130exlimivv 1690 . . . 4  |-  ( E. x E. y ( z  =  <. x ,  y >.  /\  (
x  e.  A  /\  y  e.  B )
)  ->  z  C_  ~P ( A  u.  B
) )
321, 31syl 16 . . 3  |-  ( z  e.  ( A  X.  B )  ->  z  C_ 
~P ( A  u.  B ) )
33 selpw 3970 . . 3  |-  ( z  e.  ~P ~P ( A  u.  B )  <->  z 
C_  ~P ( A  u.  B ) )
3432, 33sylibr 212 . 2  |-  ( z  e.  ( A  X.  B )  ->  z  e.  ~P ~P ( A  u.  B ) )
3534ssriv 3463 1  |-  ( A  X.  B )  C_  ~P ~P ( A  u.  B )
Colors of variables: wff setvar class
Syntax hints:    \/ wo 368    /\ wa 369    = wceq 1370   E.wex 1587    e. wcel 1758    u. cun 3429    C_ wss 3431   ~Pcpw 3963   {csn 3980   {cpr 3982   <.cop 3986    X. cxp 4941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1954  ax-ext 2431
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2602  df-v 3074  df-dif 3434  df-un 3436  df-in 3438  df-ss 3445  df-nul 3741  df-if 3895  df-pw 3965  df-sn 3981  df-pr 3983  df-op 3987  df-opab 4454  df-xp 4949
This theorem is referenced by:  unixpss  5058  xpexg  6612  rankxpu  8189  wunxp  8997  gruxp  9080
  Copyright terms: Public domain W3C validator