MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsng Structured version   Unicode version

Theorem xpsng 6048
Description: The Cartesian product of two singletons. (Contributed by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
xpsng  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( { A }  X.  { B } )  =  { <. A ,  B >. } )

Proof of Theorem xpsng
StepHypRef Expression
1 fconstg 5754 . . 3  |-  ( B  e.  W  ->  ( { A }  X.  { B } ) : { A } --> { B }
)
21adantl 464 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( { A }  X.  { B } ) : { A } --> { B } )
3 fsng 6046 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( { A }  X.  { B }
) : { A }
--> { B }  <->  ( { A }  X.  { B } )  =  { <. A ,  B >. } ) )
42, 3mpbid 210 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( { A }  X.  { B } )  =  { <. A ,  B >. } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1398    e. wcel 1823   {csn 4016   <.cop 4022    X. cxp 4986   -->wf 5566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pr 4676
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-reu 2811  df-rab 2813  df-v 3108  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-sn 4017  df-pr 4019  df-op 4023  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577
This theorem is referenced by:  xpsn  6049  f1o2sn  6050  residpr  6051  fmptsn  6067  mpt2sn  6864  repsw1  12746  s1co  12790  xpscg  15047  xpsc0  15049  xpsc1  15050  intopsn  16081  psgnsn  16744  ixpsnbasval  18050  mat1dimelbas  19140  mat1dimscm  19144  mat1dimmul  19145  mat1f1o  19147  m1detdiag  19266  pt1hmeo  20473  rngosn3  25626  fmptsnxp  31684  xpprsng  33175  lmod1zr  33348
  Copyright terms: Public domain W3C validator