MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsmet Structured version   Visualization version   Unicode version

Theorem xpsmet 21475
Description: The direct product of two metric spaces. Definition 14-1.5 of [Gleason] p. 225. (Contributed by NM, 20-Jun-2007.) (Revised by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
xpsds.t  |-  T  =  ( R  X.s  S )
xpsds.x  |-  X  =  ( Base `  R
)
xpsds.y  |-  Y  =  ( Base `  S
)
xpsds.1  |-  ( ph  ->  R  e.  V )
xpsds.2  |-  ( ph  ->  S  e.  W )
xpsds.p  |-  P  =  ( dist `  T
)
xpsds.m  |-  M  =  ( ( dist `  R
)  |`  ( X  X.  X ) )
xpsds.n  |-  N  =  ( ( dist `  S
)  |`  ( Y  X.  Y ) )
xpsmet.3  |-  ( ph  ->  M  e.  ( Met `  X ) )
xpsmet.4  |-  ( ph  ->  N  e.  ( Met `  Y ) )
Assertion
Ref Expression
xpsmet  |-  ( ph  ->  P  e.  ( Met `  ( X  X.  Y
) ) )

Proof of Theorem xpsmet
Dummy variables  x  k  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpsds.t . . 3  |-  T  =  ( R  X.s  S )
2 xpsds.x . . 3  |-  X  =  ( Base `  R
)
3 xpsds.y . . 3  |-  Y  =  ( Base `  S
)
4 xpsds.1 . . 3  |-  ( ph  ->  R  e.  V )
5 xpsds.2 . . 3  |-  ( ph  ->  S  e.  W )
6 eqid 2471 . . 3  |-  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) )  =  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  {
y } ) )
7 eqid 2471 . . 3  |-  (Scalar `  R )  =  (Scalar `  R )
8 eqid 2471 . . 3  |-  ( (Scalar `  R ) X_s `' ( { R }  +c  { S }
) )  =  ( (Scalar `  R ) X_s `' ( { R }  +c  { S } ) )
91, 2, 3, 4, 5, 6, 7, 8xpsval 15556 . 2  |-  ( ph  ->  T  =  ( `' ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) )  "s  ( (Scalar `  R ) X_s `' ( { R }  +c  { S }
) ) ) )
101, 2, 3, 4, 5, 6, 7, 8xpslem 15557 . 2  |-  ( ph  ->  ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  {
y } ) )  =  ( Base `  (
(Scalar `  R ) X_s `' ( { R }  +c  { S } ) ) ) )
116xpsff1o2 15555 . . 3  |-  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) : ( X  X.  Y ) -1-1-onto-> ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  {
y } ) )
12 f1ocnv 5840 . . 3  |-  ( ( x  e.  X , 
y  e.  Y  |->  `' ( { x }  +c  { y } ) ) : ( X  X.  Y ) -1-1-onto-> ran  (
x  e.  X , 
y  e.  Y  |->  `' ( { x }  +c  { y } ) )  ->  `' (
x  e.  X , 
y  e.  Y  |->  `' ( { x }  +c  { y } ) ) : ran  (
x  e.  X , 
y  e.  Y  |->  `' ( { x }  +c  { y } ) ) -1-1-onto-> ( X  X.  Y
) )
1311, 12mp1i 13 . 2  |-  ( ph  ->  `' ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  {
y } ) ) : ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) -1-1-onto-> ( X  X.  Y ) )
14 ovex 6336 . . 3  |-  ( (Scalar `  R ) X_s `' ( { R }  +c  { S }
) )  e.  _V
1514a1i 11 . 2  |-  ( ph  ->  ( (Scalar `  R
) X_s `' ( { R }  +c  { S }
) )  e.  _V )
16 eqid 2471 . 2  |-  ( (
dist `  ( (Scalar `  R ) X_s `' ( { R }  +c  { S }
) ) )  |`  ( ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  {
y } ) )  X.  ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) ) )  =  ( ( dist `  (
(Scalar `  R ) X_s `' ( { R }  +c  { S } ) ) )  |`  ( ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) )  X.  ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) ) )
17 xpsds.p . 2  |-  P  =  ( dist `  T
)
18 eqid 2471 . . . . 5  |-  ( (Scalar `  R ) X_s ( k  e.  2o  |->  ( `' ( { R }  +c  { S }
) `  k )
) )  =  ( (Scalar `  R ) X_s ( k  e.  2o  |->  ( `' ( { R }  +c  { S }
) `  k )
) )
19 eqid 2471 . . . . 5  |-  ( Base `  ( (Scalar `  R
) X_s ( k  e.  2o  |->  ( `' ( { R }  +c  { S }
) `  k )
) ) )  =  ( Base `  (
(Scalar `  R ) X_s ( k  e.  2o  |->  ( `' ( { R }  +c  { S }
) `  k )
) ) )
20 eqid 2471 . . . . 5  |-  ( Base `  ( `' ( { R }  +c  { S } ) `  k
) )  =  (
Base `  ( `' ( { R }  +c  { S } ) `  k ) )
21 eqid 2471 . . . . 5  |-  ( (
dist `  ( `' ( { R }  +c  { S } ) `  k ) )  |`  ( ( Base `  ( `' ( { R }  +c  { S }
) `  k )
)  X.  ( Base `  ( `' ( { R }  +c  { S } ) `  k
) ) ) )  =  ( ( dist `  ( `' ( { R }  +c  { S } ) `  k
) )  |`  (
( Base `  ( `' ( { R }  +c  { S } ) `  k ) )  X.  ( Base `  ( `' ( { R }  +c  { S }
) `  k )
) ) )
22 eqid 2471 . . . . 5  |-  ( dist `  ( (Scalar `  R
) X_s ( k  e.  2o  |->  ( `' ( { R }  +c  { S }
) `  k )
) ) )  =  ( dist `  (
(Scalar `  R ) X_s ( k  e.  2o  |->  ( `' ( { R }  +c  { S }
) `  k )
) ) )
23 fvex 5889 . . . . . 6  |-  (Scalar `  R )  e.  _V
2423a1i 11 . . . . 5  |-  ( ph  ->  (Scalar `  R )  e.  _V )
25 2onn 7359 . . . . . 6  |-  2o  e.  om
26 nnfi 7783 . . . . . 6  |-  ( 2o  e.  om  ->  2o  e.  Fin )
2725, 26mp1i 13 . . . . 5  |-  ( ph  ->  2o  e.  Fin )
28 fvex 5889 . . . . . 6  |-  ( `' ( { R }  +c  { S } ) `
 k )  e. 
_V
2928a1i 11 . . . . 5  |-  ( (
ph  /\  k  e.  2o )  ->  ( `' ( { R }  +c  { S } ) `
 k )  e. 
_V )
30 elpri 3976 . . . . . . 7  |-  ( k  e.  { (/) ,  1o }  ->  ( k  =  (/)  \/  k  =  1o ) )
31 df2o3 7213 . . . . . . 7  |-  2o  =  { (/) ,  1o }
3230, 31eleq2s 2567 . . . . . 6  |-  ( k  e.  2o  ->  (
k  =  (/)  \/  k  =  1o ) )
33 xpsmet.3 . . . . . . . . 9  |-  ( ph  ->  M  e.  ( Met `  X ) )
3433adantr 472 . . . . . . . 8  |-  ( (
ph  /\  k  =  (/) )  ->  M  e.  ( Met `  X ) )
35 fveq2 5879 . . . . . . . . . . . 12  |-  ( k  =  (/)  ->  ( `' ( { R }  +c  { S } ) `
 k )  =  ( `' ( { R }  +c  { S } ) `  (/) ) )
36 xpsc0 15544 . . . . . . . . . . . . 13  |-  ( R  e.  V  ->  ( `' ( { R }  +c  { S }
) `  (/) )  =  R )
374, 36syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( `' ( { R }  +c  { S } ) `  (/) )  =  R )
3835, 37sylan9eqr 2527 . . . . . . . . . . 11  |-  ( (
ph  /\  k  =  (/) )  ->  ( `' ( { R }  +c  { S } ) `  k )  =  R )
3938fveq2d 5883 . . . . . . . . . 10  |-  ( (
ph  /\  k  =  (/) )  ->  ( dist `  ( `' ( { R }  +c  { S } ) `  k
) )  =  (
dist `  R )
)
4038fveq2d 5883 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  =  (/) )  ->  ( Base `  ( `' ( { R }  +c  { S } ) `  k
) )  =  (
Base `  R )
)
4140, 2syl6eqr 2523 . . . . . . . . . . 11  |-  ( (
ph  /\  k  =  (/) )  ->  ( Base `  ( `' ( { R }  +c  { S } ) `  k
) )  =  X )
4241sqxpeqd 4865 . . . . . . . . . 10  |-  ( (
ph  /\  k  =  (/) )  ->  ( ( Base `  ( `' ( { R }  +c  { S } ) `  k ) )  X.  ( Base `  ( `' ( { R }  +c  { S }
) `  k )
) )  =  ( X  X.  X ) )
4339, 42reseq12d 5112 . . . . . . . . 9  |-  ( (
ph  /\  k  =  (/) )  ->  ( ( dist `  ( `' ( { R }  +c  { S } ) `  k ) )  |`  ( ( Base `  ( `' ( { R }  +c  { S }
) `  k )
)  X.  ( Base `  ( `' ( { R }  +c  { S } ) `  k
) ) ) )  =  ( ( dist `  R )  |`  ( X  X.  X ) ) )
44 xpsds.m . . . . . . . . 9  |-  M  =  ( ( dist `  R
)  |`  ( X  X.  X ) )
4543, 44syl6eqr 2523 . . . . . . . 8  |-  ( (
ph  /\  k  =  (/) )  ->  ( ( dist `  ( `' ( { R }  +c  { S } ) `  k ) )  |`  ( ( Base `  ( `' ( { R }  +c  { S }
) `  k )
)  X.  ( Base `  ( `' ( { R }  +c  { S } ) `  k
) ) ) )  =  M )
4641fveq2d 5883 . . . . . . . 8  |-  ( (
ph  /\  k  =  (/) )  ->  ( Met `  ( Base `  ( `' ( { R }  +c  { S }
) `  k )
) )  =  ( Met `  X ) )
4734, 45, 463eltr4d 2564 . . . . . . 7  |-  ( (
ph  /\  k  =  (/) )  ->  ( ( dist `  ( `' ( { R }  +c  { S } ) `  k ) )  |`  ( ( Base `  ( `' ( { R }  +c  { S }
) `  k )
)  X.  ( Base `  ( `' ( { R }  +c  { S } ) `  k
) ) ) )  e.  ( Met `  ( Base `  ( `' ( { R }  +c  { S } ) `  k ) ) ) )
48 xpsmet.4 . . . . . . . . 9  |-  ( ph  ->  N  e.  ( Met `  Y ) )
4948adantr 472 . . . . . . . 8  |-  ( (
ph  /\  k  =  1o )  ->  N  e.  ( Met `  Y
) )
50 fveq2 5879 . . . . . . . . . . . 12  |-  ( k  =  1o  ->  ( `' ( { R }  +c  { S }
) `  k )  =  ( `' ( { R }  +c  { S } ) `  1o ) )
51 xpsc1 15545 . . . . . . . . . . . . 13  |-  ( S  e.  W  ->  ( `' ( { R }  +c  { S }
) `  1o )  =  S )
525, 51syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( `' ( { R }  +c  { S } ) `  1o )  =  S )
5350, 52sylan9eqr 2527 . . . . . . . . . . 11  |-  ( (
ph  /\  k  =  1o )  ->  ( `' ( { R }  +c  { S } ) `
 k )  =  S )
5453fveq2d 5883 . . . . . . . . . 10  |-  ( (
ph  /\  k  =  1o )  ->  ( dist `  ( `' ( { R }  +c  { S } ) `  k
) )  =  (
dist `  S )
)
5553fveq2d 5883 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  =  1o )  ->  ( Base `  ( `' ( { R }  +c  { S } ) `  k
) )  =  (
Base `  S )
)
5655, 3syl6eqr 2523 . . . . . . . . . . 11  |-  ( (
ph  /\  k  =  1o )  ->  ( Base `  ( `' ( { R }  +c  { S } ) `  k
) )  =  Y )
5756sqxpeqd 4865 . . . . . . . . . 10  |-  ( (
ph  /\  k  =  1o )  ->  ( (
Base `  ( `' ( { R }  +c  { S } ) `  k ) )  X.  ( Base `  ( `' ( { R }  +c  { S }
) `  k )
) )  =  ( Y  X.  Y ) )
5854, 57reseq12d 5112 . . . . . . . . 9  |-  ( (
ph  /\  k  =  1o )  ->  ( (
dist `  ( `' ( { R }  +c  { S } ) `  k ) )  |`  ( ( Base `  ( `' ( { R }  +c  { S }
) `  k )
)  X.  ( Base `  ( `' ( { R }  +c  { S } ) `  k
) ) ) )  =  ( ( dist `  S )  |`  ( Y  X.  Y ) ) )
59 xpsds.n . . . . . . . . 9  |-  N  =  ( ( dist `  S
)  |`  ( Y  X.  Y ) )
6058, 59syl6eqr 2523 . . . . . . . 8  |-  ( (
ph  /\  k  =  1o )  ->  ( (
dist `  ( `' ( { R }  +c  { S } ) `  k ) )  |`  ( ( Base `  ( `' ( { R }  +c  { S }
) `  k )
)  X.  ( Base `  ( `' ( { R }  +c  { S } ) `  k
) ) ) )  =  N )
6156fveq2d 5883 . . . . . . . 8  |-  ( (
ph  /\  k  =  1o )  ->  ( Met `  ( Base `  ( `' ( { R }  +c  { S }
) `  k )
) )  =  ( Met `  Y ) )
6249, 60, 613eltr4d 2564 . . . . . . 7  |-  ( (
ph  /\  k  =  1o )  ->  ( (
dist `  ( `' ( { R }  +c  { S } ) `  k ) )  |`  ( ( Base `  ( `' ( { R }  +c  { S }
) `  k )
)  X.  ( Base `  ( `' ( { R }  +c  { S } ) `  k
) ) ) )  e.  ( Met `  ( Base `  ( `' ( { R }  +c  { S } ) `  k ) ) ) )
6347, 62jaodan 802 . . . . . 6  |-  ( (
ph  /\  ( k  =  (/)  \/  k  =  1o ) )  -> 
( ( dist `  ( `' ( { R }  +c  { S }
) `  k )
)  |`  ( ( Base `  ( `' ( { R }  +c  { S } ) `  k
) )  X.  ( Base `  ( `' ( { R }  +c  { S } ) `  k ) ) ) )  e.  ( Met `  ( Base `  ( `' ( { R }  +c  { S }
) `  k )
) ) )
6432, 63sylan2 482 . . . . 5  |-  ( (
ph  /\  k  e.  2o )  ->  ( (
dist `  ( `' ( { R }  +c  { S } ) `  k ) )  |`  ( ( Base `  ( `' ( { R }  +c  { S }
) `  k )
)  X.  ( Base `  ( `' ( { R }  +c  { S } ) `  k
) ) ) )  e.  ( Met `  ( Base `  ( `' ( { R }  +c  { S } ) `  k ) ) ) )
6518, 19, 20, 21, 22, 24, 27, 29, 64prdsmet 21463 . . . 4  |-  ( ph  ->  ( dist `  (
(Scalar `  R ) X_s ( k  e.  2o  |->  ( `' ( { R }  +c  { S }
) `  k )
) ) )  e.  ( Met `  ( Base `  ( (Scalar `  R ) X_s ( k  e.  2o  |->  ( `' ( { R }  +c  { S }
) `  k )
) ) ) ) )
66 xpscfn 15543 . . . . . . . 8  |-  ( ( R  e.  V  /\  S  e.  W )  ->  `' ( { R }  +c  { S }
)  Fn  2o )
674, 5, 66syl2anc 673 . . . . . . 7  |-  ( ph  ->  `' ( { R }  +c  { S }
)  Fn  2o )
68 dffn5 5924 . . . . . . 7  |-  ( `' ( { R }  +c  { S } )  Fn  2o  <->  `' ( { R }  +c  { S } )  =  ( k  e.  2o  |->  ( `' ( { R }  +c  { S }
) `  k )
) )
6967, 68sylib 201 . . . . . 6  |-  ( ph  ->  `' ( { R }  +c  { S }
)  =  ( k  e.  2o  |->  ( `' ( { R }  +c  { S } ) `
 k ) ) )
7069oveq2d 6324 . . . . 5  |-  ( ph  ->  ( (Scalar `  R
) X_s `' ( { R }  +c  { S }
) )  =  ( (Scalar `  R ) X_s ( k  e.  2o  |->  ( `' ( { R }  +c  { S }
) `  k )
) ) )
7170fveq2d 5883 . . . 4  |-  ( ph  ->  ( dist `  (
(Scalar `  R ) X_s `' ( { R }  +c  { S } ) ) )  =  (
dist `  ( (Scalar `  R ) X_s ( k  e.  2o  |->  ( `' ( { R }  +c  { S }
) `  k )
) ) ) )
7270fveq2d 5883 . . . . . 6  |-  ( ph  ->  ( Base `  (
(Scalar `  R ) X_s `' ( { R }  +c  { S } ) ) )  =  (
Base `  ( (Scalar `  R ) X_s ( k  e.  2o  |->  ( `' ( { R }  +c  { S }
) `  k )
) ) ) )
7310, 72eqtrd 2505 . . . . 5  |-  ( ph  ->  ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  {
y } ) )  =  ( Base `  (
(Scalar `  R ) X_s ( k  e.  2o  |->  ( `' ( { R }  +c  { S }
) `  k )
) ) ) )
7473fveq2d 5883 . . . 4  |-  ( ph  ->  ( Met `  ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) )  =  ( Met `  ( Base `  ( (Scalar `  R ) X_s ( k  e.  2o  |->  ( `' ( { R }  +c  { S }
) `  k )
) ) ) ) )
7565, 71, 743eltr4d 2564 . . 3  |-  ( ph  ->  ( dist `  (
(Scalar `  R ) X_s `' ( { R }  +c  { S } ) ) )  e.  ( Met `  ran  (
x  e.  X , 
y  e.  Y  |->  `' ( { x }  +c  { y } ) ) ) )
76 ssid 3437 . . 3  |-  ran  (
x  e.  X , 
y  e.  Y  |->  `' ( { x }  +c  { y } ) )  C_  ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) )
77 metres2 21456 . . 3  |-  ( ( ( dist `  (
(Scalar `  R ) X_s `' ( { R }  +c  { S } ) ) )  e.  ( Met `  ran  (
x  e.  X , 
y  e.  Y  |->  `' ( { x }  +c  { y } ) ) )  /\  ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) )  C_  ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) )  -> 
( ( dist `  (
(Scalar `  R ) X_s `' ( { R }  +c  { S } ) ) )  |`  ( ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) )  X.  ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) ) )  e.  ( Met `  ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) ) )
7875, 76, 77sylancl 675 . 2  |-  ( ph  ->  ( ( dist `  (
(Scalar `  R ) X_s `' ( { R }  +c  { S } ) ) )  |`  ( ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) )  X.  ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) ) )  e.  ( Met `  ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) ) )
799, 10, 13, 15, 16, 17, 78imasf1omet 21469 1  |-  ( ph  ->  P  e.  ( Met `  ( X  X.  Y
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 375    /\ wa 376    = wceq 1452    e. wcel 1904   _Vcvv 3031    C_ wss 3390   (/)c0 3722   {csn 3959   {cpr 3961    |-> cmpt 4454    X. cxp 4837   `'ccnv 4838   ran crn 4840    |` cres 4841    Fn wfn 5584   -1-1-onto->wf1o 5588   ` cfv 5589  (class class class)co 6308    |-> cmpt2 6310   omcom 6711   1oc1o 7193   2oc2o 7194   Fincfn 7587    +c ccda 8615   Basecbs 15199  Scalarcsca 15271   distcds 15277   X_scprds 15422    X.s cxps 15483   Metcme 19033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-iin 4272  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-of 6550  df-om 6712  df-1st 6812  df-2nd 6813  df-supp 6934  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-2o 7201  df-oadd 7204  df-er 7381  df-map 7492  df-ixp 7541  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-fsupp 7902  df-sup 7974  df-inf 7975  df-oi 8043  df-card 8391  df-cda 8616  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-4 10692  df-5 10693  df-6 10694  df-7 10695  df-8 10696  df-9 10697  df-10 10698  df-n0 10894  df-z 10962  df-dec 11075  df-uz 11183  df-rp 11326  df-xneg 11432  df-xadd 11433  df-xmul 11434  df-icc 11667  df-fz 11811  df-fzo 11943  df-seq 12252  df-hash 12554  df-struct 15201  df-ndx 15202  df-slot 15203  df-base 15204  df-sets 15205  df-ress 15206  df-plusg 15281  df-mulr 15282  df-sca 15284  df-vsca 15285  df-ip 15286  df-tset 15287  df-ple 15288  df-ds 15290  df-hom 15292  df-cco 15293  df-0g 15418  df-gsum 15419  df-prds 15424  df-xrs 15478  df-imas 15485  df-xps 15488  df-mre 15570  df-mrc 15571  df-acs 15573  df-mgm 16566  df-sgrp 16605  df-mnd 16615  df-submnd 16661  df-mulg 16754  df-cntz 17049  df-cmn 17510  df-xmet 19040  df-met 19041
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator