MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsff1o Structured version   Unicode version

Theorem xpsff1o 14842
Description: The function appearing in xpsval 14846 is a bijection from the cartesian product to the indexed cartesian product indexed on the pair  2o  =  { (/)
,  1o }. (Contributed by Mario Carneiro, 15-Aug-2015.)
Hypothesis
Ref Expression
xpsff1o.f  |-  F  =  ( x  e.  A ,  y  e.  B  |->  `' ( { x }  +c  { y } ) )
Assertion
Ref Expression
xpsff1o  |-  F :
( A  X.  B
)
-1-1-onto-> X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )
Distinct variable groups:    x, k,
y, A    B, k, x, y
Allowed substitution hints:    F( x, y, k)

Proof of Theorem xpsff1o
Dummy variables  a 
b  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpsfrnel2 14839 . . . . . 6  |-  ( `' ( { x }  +c  { y } )  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  <-> 
( x  e.  A  /\  y  e.  B
) )
21biimpri 206 . . . . 5  |-  ( ( x  e.  A  /\  y  e.  B )  ->  `' ( { x }  +c  { y } )  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  B ) )
32rgen2 2868 . . . 4  |-  A. x  e.  A  A. y  e.  B  `' ( { x }  +c  { y } )  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )
4 xpsff1o.f . . . . 5  |-  F  =  ( x  e.  A ,  y  e.  B  |->  `' ( { x }  +c  { y } ) )
54fmpt2 6852 . . . 4  |-  ( A. x  e.  A  A. y  e.  B  `' ( { x }  +c  { y } )  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  <-> 
F : ( A  X.  B ) --> X_ k  e.  2o  if ( k  =  (/) ,  A ,  B ) )
63, 5mpbi 208 . . 3  |-  F :
( A  X.  B
) --> X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )
7 1st2nd2 6822 . . . . . . . 8  |-  ( z  e.  ( A  X.  B )  ->  z  =  <. ( 1st `  z
) ,  ( 2nd `  z ) >. )
87fveq2d 5860 . . . . . . 7  |-  ( z  e.  ( A  X.  B )  ->  ( F `  z )  =  ( F `  <. ( 1st `  z
) ,  ( 2nd `  z ) >. )
)
9 df-ov 6284 . . . . . . . 8  |-  ( ( 1st `  z ) F ( 2nd `  z
) )  =  ( F `  <. ( 1st `  z ) ,  ( 2nd `  z
) >. )
10 xp1st 6815 . . . . . . . . 9  |-  ( z  e.  ( A  X.  B )  ->  ( 1st `  z )  e.  A )
11 xp2nd 6816 . . . . . . . . 9  |-  ( z  e.  ( A  X.  B )  ->  ( 2nd `  z )  e.  B )
124xpsfval 14841 . . . . . . . . 9  |-  ( ( ( 1st `  z
)  e.  A  /\  ( 2nd `  z )  e.  B )  -> 
( ( 1st `  z
) F ( 2nd `  z ) )  =  `' ( { ( 1st `  z ) }  +c  { ( 2nd `  z ) } ) )
1310, 11, 12syl2anc 661 . . . . . . . 8  |-  ( z  e.  ( A  X.  B )  ->  (
( 1st `  z
) F ( 2nd `  z ) )  =  `' ( { ( 1st `  z ) }  +c  { ( 2nd `  z ) } ) )
149, 13syl5eqr 2498 . . . . . . 7  |-  ( z  e.  ( A  X.  B )  ->  ( F `  <. ( 1st `  z ) ,  ( 2nd `  z )
>. )  =  `' ( { ( 1st `  z
) }  +c  {
( 2nd `  z
) } ) )
158, 14eqtrd 2484 . . . . . 6  |-  ( z  e.  ( A  X.  B )  ->  ( F `  z )  =  `' ( { ( 1st `  z ) }  +c  { ( 2nd `  z ) } ) )
16 1st2nd2 6822 . . . . . . . 8  |-  ( w  e.  ( A  X.  B )  ->  w  =  <. ( 1st `  w
) ,  ( 2nd `  w ) >. )
1716fveq2d 5860 . . . . . . 7  |-  ( w  e.  ( A  X.  B )  ->  ( F `  w )  =  ( F `  <. ( 1st `  w
) ,  ( 2nd `  w ) >. )
)
18 df-ov 6284 . . . . . . . 8  |-  ( ( 1st `  w ) F ( 2nd `  w
) )  =  ( F `  <. ( 1st `  w ) ,  ( 2nd `  w
) >. )
19 xp1st 6815 . . . . . . . . 9  |-  ( w  e.  ( A  X.  B )  ->  ( 1st `  w )  e.  A )
20 xp2nd 6816 . . . . . . . . 9  |-  ( w  e.  ( A  X.  B )  ->  ( 2nd `  w )  e.  B )
214xpsfval 14841 . . . . . . . . 9  |-  ( ( ( 1st `  w
)  e.  A  /\  ( 2nd `  w )  e.  B )  -> 
( ( 1st `  w
) F ( 2nd `  w ) )  =  `' ( { ( 1st `  w ) }  +c  { ( 2nd `  w ) } ) )
2219, 20, 21syl2anc 661 . . . . . . . 8  |-  ( w  e.  ( A  X.  B )  ->  (
( 1st `  w
) F ( 2nd `  w ) )  =  `' ( { ( 1st `  w ) }  +c  { ( 2nd `  w ) } ) )
2318, 22syl5eqr 2498 . . . . . . 7  |-  ( w  e.  ( A  X.  B )  ->  ( F `  <. ( 1st `  w ) ,  ( 2nd `  w )
>. )  =  `' ( { ( 1st `  w
) }  +c  {
( 2nd `  w
) } ) )
2417, 23eqtrd 2484 . . . . . 6  |-  ( w  e.  ( A  X.  B )  ->  ( F `  w )  =  `' ( { ( 1st `  w ) }  +c  { ( 2nd `  w ) } ) )
2515, 24eqeqan12d 2466 . . . . 5  |-  ( ( z  e.  ( A  X.  B )  /\  w  e.  ( A  X.  B ) )  -> 
( ( F `  z )  =  ( F `  w )  <->  `' ( { ( 1st `  z ) }  +c  { ( 2nd `  z ) } )  =  `' ( { ( 1st `  w
) }  +c  {
( 2nd `  w
) } ) ) )
26 fveq1 5855 . . . . . . . 8  |-  ( `' ( { ( 1st `  z ) }  +c  { ( 2nd `  z
) } )  =  `' ( { ( 1st `  w ) }  +c  { ( 2nd `  w ) } )  ->  ( `' ( { ( 1st `  z ) }  +c  { ( 2nd `  z ) } ) `  (/) )  =  ( `' ( { ( 1st `  w
) }  +c  {
( 2nd `  w
) } ) `  (/) ) )
27 fvex 5866 . . . . . . . . 9  |-  ( 1st `  z )  e.  _V
28 xpsc0 14834 . . . . . . . . 9  |-  ( ( 1st `  z )  e.  _V  ->  ( `' ( { ( 1st `  z ) }  +c  { ( 2nd `  z ) } ) `  (/) )  =  ( 1st `  z
) )
2927, 28ax-mp 5 . . . . . . . 8  |-  ( `' ( { ( 1st `  z ) }  +c  { ( 2nd `  z
) } ) `  (/) )  =  ( 1st `  z )
30 fvex 5866 . . . . . . . . 9  |-  ( 1st `  w )  e.  _V
31 xpsc0 14834 . . . . . . . . 9  |-  ( ( 1st `  w )  e.  _V  ->  ( `' ( { ( 1st `  w ) }  +c  { ( 2nd `  w ) } ) `  (/) )  =  ( 1st `  w
) )
3230, 31ax-mp 5 . . . . . . . 8  |-  ( `' ( { ( 1st `  w ) }  +c  { ( 2nd `  w
) } ) `  (/) )  =  ( 1st `  w )
3326, 29, 323eqtr3g 2507 . . . . . . 7  |-  ( `' ( { ( 1st `  z ) }  +c  { ( 2nd `  z
) } )  =  `' ( { ( 1st `  w ) }  +c  { ( 2nd `  w ) } )  ->  ( 1st `  z )  =  ( 1st `  w
) )
34 fveq1 5855 . . . . . . . 8  |-  ( `' ( { ( 1st `  z ) }  +c  { ( 2nd `  z
) } )  =  `' ( { ( 1st `  w ) }  +c  { ( 2nd `  w ) } )  ->  ( `' ( { ( 1st `  z ) }  +c  { ( 2nd `  z ) } ) `  1o )  =  ( `' ( { ( 1st `  w
) }  +c  {
( 2nd `  w
) } ) `  1o ) )
35 fvex 5866 . . . . . . . . 9  |-  ( 2nd `  z )  e.  _V
36 xpsc1 14835 . . . . . . . . 9  |-  ( ( 2nd `  z )  e.  _V  ->  ( `' ( { ( 1st `  z ) }  +c  { ( 2nd `  z ) } ) `  1o )  =  ( 2nd `  z ) )
3735, 36ax-mp 5 . . . . . . . 8  |-  ( `' ( { ( 1st `  z ) }  +c  { ( 2nd `  z
) } ) `  1o )  =  ( 2nd `  z )
38 fvex 5866 . . . . . . . . 9  |-  ( 2nd `  w )  e.  _V
39 xpsc1 14835 . . . . . . . . 9  |-  ( ( 2nd `  w )  e.  _V  ->  ( `' ( { ( 1st `  w ) }  +c  { ( 2nd `  w ) } ) `  1o )  =  ( 2nd `  w ) )
4038, 39ax-mp 5 . . . . . . . 8  |-  ( `' ( { ( 1st `  w ) }  +c  { ( 2nd `  w
) } ) `  1o )  =  ( 2nd `  w )
4134, 37, 403eqtr3g 2507 . . . . . . 7  |-  ( `' ( { ( 1st `  z ) }  +c  { ( 2nd `  z
) } )  =  `' ( { ( 1st `  w ) }  +c  { ( 2nd `  w ) } )  ->  ( 2nd `  z )  =  ( 2nd `  w
) )
4233, 41opeq12d 4210 . . . . . 6  |-  ( `' ( { ( 1st `  z ) }  +c  { ( 2nd `  z
) } )  =  `' ( { ( 1st `  w ) }  +c  { ( 2nd `  w ) } )  ->  <. ( 1st `  z ) ,  ( 2nd `  z
) >.  =  <. ( 1st `  w ) ,  ( 2nd `  w
) >. )
437, 16eqeqan12d 2466 . . . . . 6  |-  ( ( z  e.  ( A  X.  B )  /\  w  e.  ( A  X.  B ) )  -> 
( z  =  w  <->  <. ( 1st `  z
) ,  ( 2nd `  z ) >.  =  <. ( 1st `  w ) ,  ( 2nd `  w
) >. ) )
4442, 43syl5ibr 221 . . . . 5  |-  ( ( z  e.  ( A  X.  B )  /\  w  e.  ( A  X.  B ) )  -> 
( `' ( { ( 1st `  z
) }  +c  {
( 2nd `  z
) } )  =  `' ( { ( 1st `  w ) }  +c  { ( 2nd `  w ) } )  ->  z  =  w ) )
4525, 44sylbid 215 . . . 4  |-  ( ( z  e.  ( A  X.  B )  /\  w  e.  ( A  X.  B ) )  -> 
( ( F `  z )  =  ( F `  w )  ->  z  =  w ) )
4645rgen2 2868 . . 3  |-  A. z  e.  ( A  X.  B
) A. w  e.  ( A  X.  B
) ( ( F `
 z )  =  ( F `  w
)  ->  z  =  w )
47 dff13 6151 . . 3  |-  ( F : ( A  X.  B ) -1-1-> X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  <->  ( F : ( A  X.  B ) --> X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  /\  A. z  e.  ( A  X.  B ) A. w  e.  ( A  X.  B
) ( ( F `
 z )  =  ( F `  w
)  ->  z  =  w ) ) )
486, 46, 47mpbir2an 920 . 2  |-  F :
( A  X.  B
) -1-1-> X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )
49 xpsfrnel 14837 . . . . . 6  |-  ( z  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  <-> 
( z  Fn  2o  /\  ( z `  (/) )  e.  A  /\  ( z `
 1o )  e.  B ) )
5049simp2bi 1013 . . . . 5  |-  ( z  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  ->  ( z `  (/) )  e.  A )
5149simp3bi 1014 . . . . 5  |-  ( z  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  ->  ( z `  1o )  e.  B
)
524xpsfval 14841 . . . . . . 7  |-  ( ( ( z `  (/) )  e.  A  /\  ( z `
 1o )  e.  B )  ->  (
( z `  (/) ) F ( z `  1o ) )  =  `' ( { ( z `  (/) ) }  +c  {
( z `  1o ) } ) )
5350, 51, 52syl2anc 661 . . . . . 6  |-  ( z  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  ->  ( ( z `
 (/) ) F ( z `  1o ) )  =  `' ( { ( z `  (/) ) }  +c  {
( z `  1o ) } ) )
54 ixpfn 7477 . . . . . . 7  |-  ( z  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  ->  z  Fn  2o )
55 xpsfeq 14838 . . . . . . 7  |-  ( z  Fn  2o  ->  `' ( { ( z `  (/) ) }  +c  {
( z `  1o ) } )  =  z )
5654, 55syl 16 . . . . . 6  |-  ( z  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  ->  `' ( { ( z `  (/) ) }  +c  { ( z `
 1o ) } )  =  z )
5753, 56eqtr2d 2485 . . . . 5  |-  ( z  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  ->  z  =  ( ( z `  (/) ) F ( z `  1o ) ) )
58 rspceov 6321 . . . . 5  |-  ( ( ( z `  (/) )  e.  A  /\  ( z `
 1o )  e.  B  /\  z  =  ( ( z `  (/) ) F ( z `
 1o ) ) )  ->  E. a  e.  A  E. b  e.  B  z  =  ( a F b ) )
5950, 51, 57, 58syl3anc 1229 . . . 4  |-  ( z  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  ->  E. a  e.  A  E. b  e.  B  z  =  ( a F b ) )
6059rgen 2803 . . 3  |-  A. z  e.  X_  k  e.  2o  if ( k  =  (/) ,  A ,  B ) E. a  e.  A  E. b  e.  B  z  =  ( a F b )
61 foov 6434 . . 3  |-  ( F : ( A  X.  B ) -onto-> X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  <->  ( F : ( A  X.  B ) --> X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  /\  A. z  e.  X_  k  e.  2o  if ( k  =  (/) ,  A ,  B ) E. a  e.  A  E. b  e.  B  z  =  ( a F b ) ) )
626, 60, 61mpbir2an 920 . 2  |-  F :
( A  X.  B
) -onto-> X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )
63 df-f1o 5585 . 2  |-  ( F : ( A  X.  B ) -1-1-onto-> X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  <-> 
( F : ( A  X.  B )
-1-1->
X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  /\  F : ( A  X.  B )
-onto-> X_ k  e.  2o  if ( k  =  (/) ,  A ,  B ) ) )
6448, 62, 63mpbir2an 920 1  |-  F :
( A  X.  B
)
-1-1-onto-> X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1383    e. wcel 1804   A.wral 2793   E.wrex 2794   _Vcvv 3095   (/)c0 3770   ifcif 3926   {csn 4014   <.cop 4020    X. cxp 4987   `'ccnv 4988    Fn wfn 5573   -->wf 5574   -1-1->wf1 5575   -onto->wfo 5576   -1-1-onto->wf1o 5577   ` cfv 5578  (class class class)co 6281    |-> cmpt2 6283   1stc1st 6783   2ndc2nd 6784   1oc1o 7125   2oc2o 7126   X_cixp 7471    +c ccda 8550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-ral 2798  df-rex 2799  df-reu 2800  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-om 6686  df-1st 6785  df-2nd 6786  df-recs 7044  df-rdg 7078  df-1o 7132  df-2o 7133  df-oadd 7136  df-er 7313  df-ixp 7472  df-en 7519  df-dom 7520  df-sdom 7521  df-fin 7522  df-cda 8551
This theorem is referenced by:  xpsfrn  14843  xpsff1o2  14845
  Copyright terms: Public domain W3C validator