MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsdsfn2 Structured version   Unicode version

Theorem xpsdsfn2 20069
Description: Closure of the metric in a binary structure product. (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
xpsds.t  |-  T  =  ( R  X.s  S )
xpsds.x  |-  X  =  ( Base `  R
)
xpsds.y  |-  Y  =  ( Base `  S
)
xpsds.1  |-  ( ph  ->  R  e.  V )
xpsds.2  |-  ( ph  ->  S  e.  W )
xpsds.p  |-  P  =  ( dist `  T
)
Assertion
Ref Expression
xpsdsfn2  |-  ( ph  ->  P  Fn  ( (
Base `  T )  X.  ( Base `  T
) ) )

Proof of Theorem xpsdsfn2
StepHypRef Expression
1 xpsds.t . . 3  |-  T  =  ( R  X.s  S )
2 xpsds.x . . 3  |-  X  =  ( Base `  R
)
3 xpsds.y . . 3  |-  Y  =  ( Base `  S
)
4 xpsds.1 . . 3  |-  ( ph  ->  R  e.  V )
5 xpsds.2 . . 3  |-  ( ph  ->  S  e.  W )
6 xpsds.p . . 3  |-  P  =  ( dist `  T
)
71, 2, 3, 4, 5, 6xpsdsfn 20068 . 2  |-  ( ph  ->  P  Fn  ( ( X  X.  Y )  X.  ( X  X.  Y ) ) )
81, 2, 3, 4, 5xpsbas 14614 . . . 4  |-  ( ph  ->  ( X  X.  Y
)  =  ( Base `  T ) )
98, 8xpeq12d 4963 . . 3  |-  ( ph  ->  ( ( X  X.  Y )  X.  ( X  X.  Y ) )  =  ( ( Base `  T )  X.  ( Base `  T ) ) )
109fneq2d 5600 . 2  |-  ( ph  ->  ( P  Fn  (
( X  X.  Y
)  X.  ( X  X.  Y ) )  <-> 
P  Fn  ( (
Base `  T )  X.  ( Base `  T
) ) ) )
117, 10mpbid 210 1  |-  ( ph  ->  P  Fn  ( (
Base `  T )  X.  ( Base `  T
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1370    e. wcel 1758    X. cxp 4936    Fn wfn 5511   ` cfv 5516  (class class class)co 6190   Basecbs 14276   distcds 14349    X.s cxps 14546
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4501  ax-sep 4511  ax-nul 4519  ax-pow 4568  ax-pr 4629  ax-un 6472  ax-cnex 9439  ax-resscn 9440  ax-1cn 9441  ax-icn 9442  ax-addcl 9443  ax-addrcl 9444  ax-mulcl 9445  ax-mulrcl 9446  ax-mulcom 9447  ax-addass 9448  ax-mulass 9449  ax-distr 9450  ax-i2m1 9451  ax-1ne0 9452  ax-1rid 9453  ax-rnegex 9454  ax-rrecex 9455  ax-cnre 9456  ax-pre-lttri 9457  ax-pre-lttrn 9458  ax-pre-ltadd 9459  ax-pre-mulgt0 9460
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3070  df-sbc 3285  df-csb 3387  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-pss 3442  df-nul 3736  df-if 3890  df-pw 3960  df-sn 3976  df-pr 3978  df-tp 3980  df-op 3982  df-uni 4190  df-int 4227  df-iun 4271  df-br 4391  df-opab 4449  df-mpt 4450  df-tr 4484  df-eprel 4730  df-id 4734  df-po 4739  df-so 4740  df-fr 4777  df-we 4779  df-ord 4820  df-on 4821  df-lim 4822  df-suc 4823  df-xp 4944  df-rel 4945  df-cnv 4946  df-co 4947  df-dm 4948  df-rn 4949  df-res 4950  df-ima 4951  df-iota 5479  df-fun 5518  df-fn 5519  df-f 5520  df-f1 5521  df-fo 5522  df-f1o 5523  df-fv 5524  df-riota 6151  df-ov 6193  df-oprab 6194  df-mpt2 6195  df-om 6577  df-1st 6677  df-2nd 6678  df-recs 6932  df-rdg 6966  df-1o 7020  df-2o 7021  df-oadd 7024  df-er 7201  df-map 7316  df-ixp 7364  df-en 7411  df-dom 7412  df-sdom 7413  df-fin 7414  df-sup 7792  df-cda 8438  df-pnf 9521  df-mnf 9522  df-xr 9523  df-ltxr 9524  df-le 9525  df-sub 9698  df-neg 9699  df-nn 10424  df-2 10481  df-3 10482  df-4 10483  df-5 10484  df-6 10485  df-7 10486  df-8 10487  df-9 10488  df-10 10489  df-n0 10681  df-z 10748  df-dec 10857  df-uz 10963  df-fz 11539  df-struct 14278  df-ndx 14279  df-slot 14280  df-base 14281  df-plusg 14353  df-mulr 14354  df-sca 14356  df-vsca 14357  df-ip 14358  df-tset 14359  df-ple 14360  df-ds 14362  df-hom 14364  df-cco 14365  df-prds 14488  df-imas 14548  df-xps 14550
This theorem is referenced by:  tmsxps  20227  tmsxpsmopn  20228
  Copyright terms: Public domain W3C validator