MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpscf Structured version   Unicode version

Theorem xpscf 14622
Description: Equivalent condition for the pair function to be a proper function on  A. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xpscf  |-  ( `' ( { X }  +c  { Y } ) : 2o --> A  <->  ( X  e.  A  /\  Y  e.  A ) )

Proof of Theorem xpscf
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 ifid 3933 . . . . . 6  |-  if ( k  =  (/) ,  A ,  A )  =  A
21eleq2i 2532 . . . . 5  |-  ( ( `' ( { X }  +c  { Y }
) `  k )  e.  if ( k  =  (/) ,  A ,  A
)  <->  ( `' ( { X }  +c  { Y } ) `  k )  e.  A
)
32ralbii 2838 . . . 4  |-  ( A. k  e.  2o  ( `' ( { X }  +c  { Y }
) `  k )  e.  if ( k  =  (/) ,  A ,  A
)  <->  A. k  e.  2o  ( `' ( { X }  +c  { Y }
) `  k )  e.  A )
43anbi2i 694 . . 3  |-  ( ( `' ( { X }  +c  { Y }
)  Fn  2o  /\  A. k  e.  2o  ( `' ( { X }  +c  { Y }
) `  k )  e.  if ( k  =  (/) ,  A ,  A
) )  <->  ( `' ( { X }  +c  { Y } )  Fn  2o  /\  A. k  e.  2o  ( `' ( { X }  +c  { Y } ) `  k )  e.  A
) )
5 ovex 6224 . . . . 5  |-  ( { X }  +c  { Y } )  e.  _V
65cnvex 6634 . . . 4  |-  `' ( { X }  +c  { Y } )  e. 
_V
76elixp 7379 . . 3  |-  ( `' ( { X }  +c  { Y } )  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  A )  <-> 
( `' ( { X }  +c  { Y } )  Fn  2o  /\ 
A. k  e.  2o  ( `' ( { X }  +c  { Y }
) `  k )  e.  if ( k  =  (/) ,  A ,  A
) ) )
8 ffnfv 5977 . . 3  |-  ( `' ( { X }  +c  { Y } ) : 2o --> A  <->  ( `' ( { X }  +c  { Y } )  Fn  2o  /\  A. k  e.  2o  ( `' ( { X }  +c  { Y } ) `  k )  e.  A
) )
94, 7, 83bitr4i 277 . 2  |-  ( `' ( { X }  +c  { Y } )  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  A )  <->  `' ( { X }  +c  { Y }
) : 2o --> A )
10 xpsfrnel2 14621 . 2  |-  ( `' ( { X }  +c  { Y } )  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  A )  <-> 
( X  e.  A  /\  Y  e.  A
) )
119, 10bitr3i 251 1  |-  ( `' ( { X }  +c  { Y } ) : 2o --> A  <->  ( X  e.  A  /\  Y  e.  A ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758   A.wral 2798   (/)c0 3744   ifcif 3898   {csn 3984   `'ccnv 4946    Fn wfn 5520   -->wf 5521   ` cfv 5525  (class class class)co 6199   2oc2o 7023   X_cixp 7372    +c ccda 8446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4520  ax-nul 4528  ax-pow 4577  ax-pr 4638  ax-un 6481
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2649  df-ral 2803  df-rex 2804  df-reu 2805  df-rab 2807  df-v 3078  df-sbc 3293  df-csb 3395  df-dif 3438  df-un 3440  df-in 3442  df-ss 3449  df-pss 3451  df-nul 3745  df-if 3899  df-pw 3969  df-sn 3985  df-pr 3987  df-tp 3989  df-op 3991  df-uni 4199  df-int 4236  df-iun 4280  df-br 4400  df-opab 4458  df-mpt 4459  df-tr 4493  df-eprel 4739  df-id 4743  df-po 4748  df-so 4749  df-fr 4786  df-we 4788  df-ord 4829  df-on 4830  df-lim 4831  df-suc 4832  df-xp 4953  df-rel 4954  df-cnv 4955  df-co 4956  df-dm 4957  df-rn 4958  df-res 4959  df-ima 4960  df-iota 5488  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-ov 6202  df-oprab 6203  df-mpt2 6204  df-om 6586  df-recs 6941  df-rdg 6975  df-1o 7029  df-2o 7030  df-oadd 7033  df-er 7210  df-ixp 7373  df-en 7420  df-dom 7421  df-sdom 7422  df-fin 7423  df-cda 8447
This theorem is referenced by:  xpsmnd  15579  xpsgrp  15792  dmdprdpr  16669  dprdpr  16670  xpstopnlem1  19513  xpstps  19514  xpsxms  20240  xpsms  20241
  Copyright terms: Public domain W3C validator