MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsc1 Structured version   Unicode version

Theorem xpsc1 14812
Description: The pair function maps  1 to  B. (Contributed by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
xpsc1  |-  ( B  e.  V  ->  ( `' ( { A }  +c  { B }
) `  1o )  =  B )

Proof of Theorem xpsc1
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 xpsc 14808 . . . 4  |-  `' ( { A }  +c  { B } )  =  ( ( { (/) }  X.  { A }
)  u.  ( { 1o }  X.  { B } ) )
21fveq1i 5865 . . 3  |-  ( `' ( { A }  +c  { B } ) `
 1o )  =  ( ( ( {
(/) }  X.  { A } )  u.  ( { 1o }  X.  { B } ) ) `  1o )
3 vex 3116 . . . . . . . . . . . . 13  |-  x  e. 
_V
4 fvi 5922 . . . . . . . . . . . . 13  |-  ( x  e.  _V  ->  (  _I  `  x )  =  x )
53, 4ax-mp 5 . . . . . . . . . . . 12  |-  (  _I 
`  x )  =  x
6 elsni 4052 . . . . . . . . . . . . 13  |-  ( x  e.  { A }  ->  x  =  A )
76fveq2d 5868 . . . . . . . . . . . 12  |-  ( x  e.  { A }  ->  (  _I  `  x
)  =  (  _I 
`  A ) )
85, 7syl5eqr 2522 . . . . . . . . . . 11  |-  ( x  e.  { A }  ->  x  =  (  _I 
`  A ) )
9 elsn 4041 . . . . . . . . . . 11  |-  ( x  e.  { (  _I 
`  A ) }  <-> 
x  =  (  _I 
`  A ) )
108, 9sylibr 212 . . . . . . . . . 10  |-  ( x  e.  { A }  ->  x  e.  { (  _I  `  A ) } )
1110ssriv 3508 . . . . . . . . 9  |-  { A }  C_  { (  _I 
`  A ) }
12 xpss2 5110 . . . . . . . . 9  |-  ( { A }  C_  { (  _I  `  A ) }  ->  ( { (/)
}  X.  { A } )  C_  ( { (/) }  X.  {
(  _I  `  A
) } ) )
1311, 12ax-mp 5 . . . . . . . 8  |-  ( {
(/) }  X.  { A } )  C_  ( { (/) }  X.  {
(  _I  `  A
) } )
14 0ex 4577 . . . . . . . . 9  |-  (/)  e.  _V
15 fvex 5874 . . . . . . . . 9  |-  (  _I 
`  A )  e. 
_V
1614, 15xpsn 6061 . . . . . . . 8  |-  ( {
(/) }  X.  { (  _I  `  A ) } )  =  { <.
(/) ,  (  _I  `  A ) >. }
1713, 16sseqtri 3536 . . . . . . 7  |-  ( {
(/) }  X.  { A } )  C_  { <. (/)
,  (  _I  `  A ) >. }
1814, 15funsn 5634 . . . . . . 7  |-  Fun  { <.
(/) ,  (  _I  `  A ) >. }
19 funss 5604 . . . . . . 7  |-  ( ( { (/) }  X.  { A } )  C_  { <. (/)
,  (  _I  `  A ) >. }  ->  ( Fun  { <. (/) ,  (  _I  `  A )
>. }  ->  Fun  ( {
(/) }  X.  { A } ) ) )
2017, 18, 19mp2 9 . . . . . 6  |-  Fun  ( { (/) }  X.  { A } )
21 funfn 5615 . . . . . 6  |-  ( Fun  ( { (/) }  X.  { A } )  <->  ( { (/)
}  X.  { A } )  Fn  dom  ( { (/) }  X.  { A } ) )
2220, 21mpbi 208 . . . . 5  |-  ( {
(/) }  X.  { A } )  Fn  dom  ( { (/) }  X.  { A } )
2322a1i 11 . . . 4  |-  ( B  e.  V  ->  ( { (/) }  X.  { A } )  Fn  dom  ( { (/) }  X.  { A } ) )
24 fnconstg 5771 . . . 4  |-  ( B  e.  V  ->  ( { 1o }  X.  { B } )  Fn  { 1o } )
25 dmxpss 5436 . . . . . . 7  |-  dom  ( { (/) }  X.  { A } )  C_  { (/) }
26 ssrin 3723 . . . . . . 7  |-  ( dom  ( { (/) }  X.  { A } )  C_  {
(/) }  ->  ( dom  ( { (/) }  X.  { A } )  i^i 
{ 1o } ) 
C_  ( { (/) }  i^i  { 1o }
) )
2725, 26ax-mp 5 . . . . . 6  |-  ( dom  ( { (/) }  X.  { A } )  i^i 
{ 1o } ) 
C_  ( { (/) }  i^i  { 1o }
)
28 1n0 7142 . . . . . . . 8  |-  1o  =/=  (/)
2928necomi 2737 . . . . . . 7  |-  (/)  =/=  1o
30 disjsn2 4089 . . . . . . 7  |-  ( (/)  =/=  1o  ->  ( { (/)
}  i^i  { 1o } )  =  (/) )
3129, 30ax-mp 5 . . . . . 6  |-  ( {
(/) }  i^i  { 1o } )  =  (/)
32 sseq0 3817 . . . . . 6  |-  ( ( ( dom  ( {
(/) }  X.  { A } )  i^i  { 1o } )  C_  ( { (/) }  i^i  { 1o } )  /\  ( { (/) }  i^i  { 1o } )  =  (/) )  ->  ( dom  ( { (/) }  X.  { A } )  i^i  { 1o } )  =  (/) )
3327, 31, 32mp2an 672 . . . . 5  |-  ( dom  ( { (/) }  X.  { A } )  i^i 
{ 1o } )  =  (/)
3433a1i 11 . . . 4  |-  ( B  e.  V  ->  ( dom  ( { (/) }  X.  { A } )  i^i 
{ 1o } )  =  (/) )
35 1on 7134 . . . . . . 7  |-  1o  e.  On
3635elexi 3123 . . . . . 6  |-  1o  e.  _V
3736snid 4055 . . . . 5  |-  1o  e.  { 1o }
3837a1i 11 . . . 4  |-  ( B  e.  V  ->  1o  e.  { 1o } )
39 fvun2 5937 . . . 4  |-  ( ( ( { (/) }  X.  { A } )  Fn 
dom  ( { (/) }  X.  { A }
)  /\  ( { 1o }  X.  { B } )  Fn  { 1o }  /\  ( ( dom  ( { (/) }  X.  { A }
)  i^i  { 1o } )  =  (/)  /\  1o  e.  { 1o } ) )  -> 
( ( ( {
(/) }  X.  { A } )  u.  ( { 1o }  X.  { B } ) ) `  1o )  =  (
( { 1o }  X.  { B } ) `
 1o ) )
4023, 24, 34, 38, 39syl112anc 1232 . . 3  |-  ( B  e.  V  ->  (
( ( { (/) }  X.  { A }
)  u.  ( { 1o }  X.  { B } ) ) `  1o )  =  (
( { 1o }  X.  { B } ) `
 1o ) )
412, 40syl5eq 2520 . 2  |-  ( B  e.  V  ->  ( `' ( { A }  +c  { B }
) `  1o )  =  ( ( { 1o }  X.  { B } ) `  1o ) )
42 xpsng 6060 . . . . 5  |-  ( ( 1o  e.  On  /\  B  e.  V )  ->  ( { 1o }  X.  { B } )  =  { <. 1o ,  B >. } )
4342fveq1d 5866 . . . 4  |-  ( ( 1o  e.  On  /\  B  e.  V )  ->  ( ( { 1o }  X.  { B }
) `  1o )  =  ( { <. 1o ,  B >. } `  1o ) )
44 fvsng 6093 . . . 4  |-  ( ( 1o  e.  On  /\  B  e.  V )  ->  ( { <. 1o ,  B >. } `  1o )  =  B )
4543, 44eqtrd 2508 . . 3  |-  ( ( 1o  e.  On  /\  B  e.  V )  ->  ( ( { 1o }  X.  { B }
) `  1o )  =  B )
4635, 45mpan 670 . 2  |-  ( B  e.  V  ->  (
( { 1o }  X.  { B } ) `
 1o )  =  B )
4741, 46eqtrd 2508 1  |-  ( B  e.  V  ->  ( `' ( { A }  +c  { B }
) `  1o )  =  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   _Vcvv 3113    u. cun 3474    i^i cin 3475    C_ wss 3476   (/)c0 3785   {csn 4027   <.cop 4033    _I cid 4790   Oncon0 4878    X. cxp 4997   `'ccnv 4998   dom cdm 4999   Fun wfun 5580    Fn wfn 5581   ` cfv 5586  (class class class)co 6282   1oc1o 7120    +c ccda 8543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-1o 7127  df-cda 8544
This theorem is referenced by:  xpscfv  14813  xpsfeq  14815  xpsfrnel2  14816  xpsff1o  14819  xpsle  14832  dmdprdpr  16888  dprdpr  16889  xpstopnlem1  20045  xpstopnlem2  20047  xpsxmetlem  20617  xpsdsval  20619  xpsmet  20620
  Copyright terms: Public domain W3C validator