MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsc0 Structured version   Unicode version

Theorem xpsc0 15410
Description: The pair function maps  0 to  A. (Contributed by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
xpsc0  |-  ( A  e.  V  ->  ( `' ( { A }  +c  { B }
) `  (/) )  =  A )

Proof of Theorem xpsc0
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 xpsc 15407 . . . 4  |-  `' ( { A }  +c  { B } )  =  ( ( { (/) }  X.  { A }
)  u.  ( { 1o }  X.  { B } ) )
21fveq1i 5873 . . 3  |-  ( `' ( { A }  +c  { B } ) `
 (/) )  =  ( ( ( { (/) }  X.  { A }
)  u.  ( { 1o }  X.  { B } ) ) `  (/) )
3 fnconstg 5779 . . . 4  |-  ( A  e.  V  ->  ( { (/) }  X.  { A } )  Fn  { (/)
} )
4 vex 3081 . . . . . . . . . . . . 13  |-  x  e. 
_V
5 fvi 5929 . . . . . . . . . . . . 13  |-  ( x  e.  _V  ->  (  _I  `  x )  =  x )
64, 5ax-mp 5 . . . . . . . . . . . 12  |-  (  _I 
`  x )  =  x
7 elsni 4018 . . . . . . . . . . . . 13  |-  ( x  e.  { B }  ->  x  =  B )
87fveq2d 5876 . . . . . . . . . . . 12  |-  ( x  e.  { B }  ->  (  _I  `  x
)  =  (  _I 
`  B ) )
96, 8syl5eqr 2475 . . . . . . . . . . 11  |-  ( x  e.  { B }  ->  x  =  (  _I 
`  B ) )
10 elsn 4007 . . . . . . . . . . 11  |-  ( x  e.  { (  _I 
`  B ) }  <-> 
x  =  (  _I 
`  B ) )
119, 10sylibr 215 . . . . . . . . . 10  |-  ( x  e.  { B }  ->  x  e.  { (  _I  `  B ) } )
1211ssriv 3465 . . . . . . . . 9  |-  { B }  C_  { (  _I 
`  B ) }
13 xpss2 4955 . . . . . . . . 9  |-  ( { B }  C_  { (  _I  `  B ) }  ->  ( { 1o }  X.  { B } )  C_  ( { 1o }  X.  {
(  _I  `  B
) } ) )
1412, 13ax-mp 5 . . . . . . . 8  |-  ( { 1o }  X.  { B } )  C_  ( { 1o }  X.  {
(  _I  `  B
) } )
15 1on 7188 . . . . . . . . . 10  |-  1o  e.  On
1615elexi 3088 . . . . . . . . 9  |-  1o  e.  _V
17 fvex 5882 . . . . . . . . 9  |-  (  _I 
`  B )  e. 
_V
1816, 17xpsn 6072 . . . . . . . 8  |-  ( { 1o }  X.  {
(  _I  `  B
) } )  =  { <. 1o ,  (  _I  `  B )
>. }
1914, 18sseqtri 3493 . . . . . . 7  |-  ( { 1o }  X.  { B } )  C_  { <. 1o ,  (  _I  `  B ) >. }
2016, 17funsn 5640 . . . . . . 7  |-  Fun  { <. 1o ,  (  _I 
`  B ) >. }
21 funss 5610 . . . . . . 7  |-  ( ( { 1o }  X.  { B } )  C_  {
<. 1o ,  (  _I 
`  B ) >. }  ->  ( Fun  { <. 1o ,  (  _I 
`  B ) >. }  ->  Fun  ( { 1o }  X.  { B } ) ) )
2219, 20, 21mp2 9 . . . . . 6  |-  Fun  ( { 1o }  X.  { B } )
23 funfn 5621 . . . . . 6  |-  ( Fun  ( { 1o }  X.  { B } )  <-> 
( { 1o }  X.  { B } )  Fn  dom  ( { 1o }  X.  { B } ) )
2422, 23mpbi 211 . . . . 5  |-  ( { 1o }  X.  { B } )  Fn  dom  ( { 1o }  X.  { B } )
2524a1i 11 . . . 4  |-  ( A  e.  V  ->  ( { 1o }  X.  { B } )  Fn  dom  ( { 1o }  X.  { B } ) )
26 dmxpss 5279 . . . . . . 7  |-  dom  ( { 1o }  X.  { B } )  C_  { 1o }
27 sslin 3685 . . . . . . 7  |-  ( dom  ( { 1o }  X.  { B } ) 
C_  { 1o }  ->  ( { (/) }  i^i  dom  ( { 1o }  X.  { B } ) )  C_  ( { (/)
}  i^i  { 1o } ) )
2826, 27ax-mp 5 . . . . . 6  |-  ( {
(/) }  i^i  dom  ( { 1o }  X.  { B } ) )  C_  ( { (/) }  i^i  { 1o } )
29 1n0 7196 . . . . . . . 8  |-  1o  =/=  (/)
3029necomi 2692 . . . . . . 7  |-  (/)  =/=  1o
31 disjsn2 4055 . . . . . . 7  |-  ( (/)  =/=  1o  ->  ( { (/)
}  i^i  { 1o } )  =  (/) )
3230, 31ax-mp 5 . . . . . 6  |-  ( {
(/) }  i^i  { 1o } )  =  (/)
33 sseq0 3791 . . . . . 6  |-  ( ( ( { (/) }  i^i  dom  ( { 1o }  X.  { B } ) )  C_  ( { (/)
}  i^i  { 1o } )  /\  ( { (/) }  i^i  { 1o } )  =  (/) )  ->  ( { (/) }  i^i  dom  ( { 1o }  X.  { B } ) )  =  (/) )
3428, 32, 33mp2an 676 . . . . 5  |-  ( {
(/) }  i^i  dom  ( { 1o }  X.  { B } ) )  =  (/)
3534a1i 11 . . . 4  |-  ( A  e.  V  ->  ( { (/) }  i^i  dom  ( { 1o }  X.  { B } ) )  =  (/) )
36 0ex 4548 . . . . . 6  |-  (/)  e.  _V
3736snid 4021 . . . . 5  |-  (/)  e.  { (/)
}
3837a1i 11 . . . 4  |-  ( A  e.  V  ->  (/)  e.  { (/)
} )
39 fvun1 5943 . . . 4  |-  ( ( ( { (/) }  X.  { A } )  Fn 
{ (/) }  /\  ( { 1o }  X.  { B } )  Fn  dom  ( { 1o }  X.  { B } )  /\  ( ( { (/) }  i^i  dom  ( { 1o }  X.  { B } ) )  =  (/)  /\  (/)  e.  { (/) } ) )  ->  (
( ( { (/) }  X.  { A }
)  u.  ( { 1o }  X.  { B } ) ) `  (/) )  =  ( ( { (/) }  X.  { A } ) `  (/) ) )
403, 25, 35, 38, 39syl112anc 1268 . . 3  |-  ( A  e.  V  ->  (
( ( { (/) }  X.  { A }
)  u.  ( { 1o }  X.  { B } ) ) `  (/) )  =  ( ( { (/) }  X.  { A } ) `  (/) ) )
412, 40syl5eq 2473 . 2  |-  ( A  e.  V  ->  ( `' ( { A }  +c  { B }
) `  (/) )  =  ( ( { (/) }  X.  { A }
) `  (/) ) )
42 xpsng 6071 . . . . 5  |-  ( (
(/)  e.  _V  /\  A  e.  V )  ->  ( { (/) }  X.  { A } )  =  { <.
(/) ,  A >. } )
4342fveq1d 5874 . . . 4  |-  ( (
(/)  e.  _V  /\  A  e.  V )  ->  (
( { (/) }  X.  { A } ) `  (/) )  =  ( {
<. (/) ,  A >. } `
 (/) ) )
44 fvsng 6104 . . . 4  |-  ( (
(/)  e.  _V  /\  A  e.  V )  ->  ( { <. (/) ,  A >. } `
 (/) )  =  A )
4543, 44eqtrd 2461 . . 3  |-  ( (
(/)  e.  _V  /\  A  e.  V )  ->  (
( { (/) }  X.  { A } ) `  (/) )  =  A )
4636, 45mpan 674 . 2  |-  ( A  e.  V  ->  (
( { (/) }  X.  { A } ) `  (/) )  =  A )
4741, 46eqtrd 2461 1  |-  ( A  e.  V  ->  ( `' ( { A }  +c  { B }
) `  (/) )  =  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    = wceq 1437    e. wcel 1867    =/= wne 2616   _Vcvv 3078    u. cun 3431    i^i cin 3432    C_ wss 3433   (/)c0 3758   {csn 3993   <.cop 3999    _I cid 4755    X. cxp 4843   `'ccnv 4844   dom cdm 4845   Oncon0 5433   Fun wfun 5586    Fn wfn 5587   ` cfv 5592  (class class class)co 6296   1oc1o 7174    +c ccda 8586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-8 1869  ax-9 1871  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398  ax-sep 4539  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6588
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2267  df-mo 2268  df-clab 2406  df-cleq 2412  df-clel 2415  df-nfc 2570  df-ne 2618  df-ral 2778  df-rex 2779  df-reu 2780  df-rab 2782  df-v 3080  df-sbc 3297  df-dif 3436  df-un 3438  df-in 3440  df-ss 3447  df-pss 3449  df-nul 3759  df-if 3907  df-pw 3978  df-sn 3994  df-pr 3996  df-tp 3998  df-op 4000  df-uni 4214  df-br 4418  df-opab 4476  df-mpt 4477  df-tr 4512  df-eprel 4756  df-id 4760  df-po 4766  df-so 4767  df-fr 4804  df-we 4806  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-ord 5436  df-on 5437  df-suc 5439  df-iota 5556  df-fun 5594  df-fn 5595  df-f 5596  df-f1 5597  df-fo 5598  df-f1o 5599  df-fv 5600  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-1o 7181  df-cda 8587
This theorem is referenced by:  xpscfv  15412  xpsfeq  15414  xpsfrnel2  15415  xpsff1o  15418  xpsle  15431  dmdprdpr  17610  dprdpr  17611  xpstopnlem1  20748  xpstopnlem2  20750  xpsxmetlem  21318  xpsdsval  21320  xpsmet  21321
  Copyright terms: Public domain W3C validator