MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpindir Structured version   Unicode version

Theorem xpindir 4974
Description: Distributive law for Cartesian product over intersection. Similar to Theorem 102 of [Suppes] p. 52. (Contributed by NM, 26-Sep-2004.)
Assertion
Ref Expression
xpindir  |-  ( ( A  i^i  B )  X.  C )  =  ( ( A  X.  C )  i^i  ( B  X.  C ) )

Proof of Theorem xpindir
StepHypRef Expression
1 inxp 4972 . 2  |-  ( ( A  X.  C )  i^i  ( B  X.  C ) )  =  ( ( A  i^i  B )  X.  ( C  i^i  C ) )
2 inidm 3559 . . 3  |-  ( C  i^i  C )  =  C
32xpeq2i 4861 . 2  |-  ( ( A  i^i  B )  X.  ( C  i^i  C ) )  =  ( ( A  i^i  B
)  X.  C )
41, 3eqtr2i 2464 1  |-  ( ( A  i^i  B )  X.  C )  =  ( ( A  X.  C )  i^i  ( B  X.  C ) )
Colors of variables: wff setvar class
Syntax hints:    = wceq 1369    i^i cin 3327    X. cxp 4838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4413  ax-nul 4421  ax-pr 4531
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2720  df-rex 2721  df-rab 2724  df-v 2974  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-nul 3638  df-if 3792  df-sn 3878  df-pr 3880  df-op 3884  df-opab 4351  df-xp 4846  df-rel 4847
This theorem is referenced by:  resres  5123  resindi  5126  imainrect  5279  resdmres  5329  cdaassen  8351  txhaus  19220  ustund  19796
  Copyright terms: Public domain W3C validator