MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpiindi Structured version   Unicode version

Theorem xpiindi 5129
Description: Distributive law for Cartesian product over indexed intersection. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
xpiindi  |-  ( A  =/=  (/)  ->  ( C  X.  |^|_ x  e.  A  B )  =  |^|_ x  e.  A  ( C  X.  B ) )
Distinct variable groups:    x, A    x, C
Allowed substitution hint:    B( x)

Proof of Theorem xpiindi
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relxp 5101 . . . . . 6  |-  Rel  ( C  X.  B )
21rgenw 2818 . . . . 5  |-  A. x  e.  A  Rel  ( C  X.  B )
3 r19.2z 3910 . . . . 5  |-  ( ( A  =/=  (/)  /\  A. x  e.  A  Rel  ( C  X.  B
) )  ->  E. x  e.  A  Rel  ( C  X.  B ) )
42, 3mpan2 671 . . . 4  |-  ( A  =/=  (/)  ->  E. x  e.  A  Rel  ( C  X.  B ) )
5 reliin 5115 . . . 4  |-  ( E. x  e.  A  Rel  ( C  X.  B
)  ->  Rel  |^|_ x  e.  A  ( C  X.  B ) )
64, 5syl 16 . . 3  |-  ( A  =/=  (/)  ->  Rel  |^|_ x  e.  A  ( C  X.  B ) )
7 relxp 5101 . . 3  |-  Rel  ( C  X.  |^|_ x  e.  A  B )
86, 7jctil 537 . 2  |-  ( A  =/=  (/)  ->  ( Rel  ( C  X.  |^|_ x  e.  A  B )  /\  Rel  |^|_ x  e.  A  ( C  X.  B
) ) )
9 r19.28zv 3916 . . . . . 6  |-  ( A  =/=  (/)  ->  ( A. x  e.  A  (
y  e.  C  /\  z  e.  B )  <->  ( y  e.  C  /\  A. x  e.  A  z  e.  B ) ) )
109bicomd 201 . . . . 5  |-  ( A  =/=  (/)  ->  ( (
y  e.  C  /\  A. x  e.  A  z  e.  B )  <->  A. x  e.  A  ( y  e.  C  /\  z  e.  B ) ) )
11 vex 3109 . . . . . . 7  |-  z  e. 
_V
12 eliin 4324 . . . . . . 7  |-  ( z  e.  _V  ->  (
z  e.  |^|_ x  e.  A  B  <->  A. x  e.  A  z  e.  B ) )
1311, 12ax-mp 5 . . . . . 6  |-  ( z  e.  |^|_ x  e.  A  B 
<-> 
A. x  e.  A  z  e.  B )
1413anbi2i 694 . . . . 5  |-  ( ( y  e.  C  /\  z  e.  |^|_ x  e.  A  B )  <->  ( y  e.  C  /\  A. x  e.  A  z  e.  B ) )
15 opelxp 5021 . . . . . 6  |-  ( <.
y ,  z >.  e.  ( C  X.  B
)  <->  ( y  e.  C  /\  z  e.  B ) )
1615ralbii 2888 . . . . 5  |-  ( A. x  e.  A  <. y ,  z >.  e.  ( C  X.  B )  <->  A. x  e.  A  ( y  e.  C  /\  z  e.  B
) )
1710, 14, 163bitr4g 288 . . . 4  |-  ( A  =/=  (/)  ->  ( (
y  e.  C  /\  z  e.  |^|_ x  e.  A  B )  <->  A. x  e.  A  <. y ,  z >.  e.  ( C  X.  B ) ) )
18 opelxp 5021 . . . 4  |-  ( <.
y ,  z >.  e.  ( C  X.  |^|_ x  e.  A  B )  <-> 
( y  e.  C  /\  z  e.  |^|_ x  e.  A  B )
)
19 opex 4704 . . . . 5  |-  <. y ,  z >.  e.  _V
20 eliin 4324 . . . . 5  |-  ( <.
y ,  z >.  e.  _V  ->  ( <. y ,  z >.  e.  |^|_ x  e.  A  ( C  X.  B )  <->  A. x  e.  A  <. y ,  z >.  e.  ( C  X.  B ) ) )
2119, 20ax-mp 5 . . . 4  |-  ( <.
y ,  z >.  e.  |^|_ x  e.  A  ( C  X.  B
)  <->  A. x  e.  A  <. y ,  z >.  e.  ( C  X.  B
) )
2217, 18, 213bitr4g 288 . . 3  |-  ( A  =/=  (/)  ->  ( <. y ,  z >.  e.  ( C  X.  |^|_ x  e.  A  B )  <->  <.
y ,  z >.  e.  |^|_ x  e.  A  ( C  X.  B
) ) )
2322eqrelrdv2 5093 . 2  |-  ( ( ( Rel  ( C  X.  |^|_ x  e.  A  B )  /\  Rel  |^|_
x  e.  A  ( C  X.  B ) )  /\  A  =/=  (/) )  ->  ( C  X.  |^|_ x  e.  A  B )  =  |^|_ x  e.  A  ( C  X.  B ) )
248, 23mpancom 669 1  |-  ( A  =/=  (/)  ->  ( C  X.  |^|_ x  e.  A  B )  =  |^|_ x  e.  A  ( C  X.  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1374    e. wcel 1762    =/= wne 2655   A.wral 2807   E.wrex 2808   _Vcvv 3106   (/)c0 3778   <.cop 4026   |^|_ciin 4319    X. cxp 4990   Rel wrel 4997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-sep 4561  ax-nul 4569  ax-pr 4679
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3108  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-nul 3779  df-if 3933  df-sn 4021  df-pr 4023  df-op 4027  df-iin 4321  df-opab 4499  df-xp 4998  df-rel 4999
This theorem is referenced by:  xpriindi  5130
  Copyright terms: Public domain W3C validator