MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpiindi Structured version   Unicode version

Theorem xpiindi 5128
Description: Distributive law for Cartesian product over indexed intersection. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
xpiindi  |-  ( A  =/=  (/)  ->  ( C  X.  |^|_ x  e.  A  B )  =  |^|_ x  e.  A  ( C  X.  B ) )
Distinct variable groups:    x, A    x, C
Allowed substitution hint:    B( x)

Proof of Theorem xpiindi
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relxp 5100 . . . . . 6  |-  Rel  ( C  X.  B )
21rgenw 2804 . . . . 5  |-  A. x  e.  A  Rel  ( C  X.  B )
3 r19.2z 3904 . . . . 5  |-  ( ( A  =/=  (/)  /\  A. x  e.  A  Rel  ( C  X.  B
) )  ->  E. x  e.  A  Rel  ( C  X.  B ) )
42, 3mpan2 671 . . . 4  |-  ( A  =/=  (/)  ->  E. x  e.  A  Rel  ( C  X.  B ) )
5 reliin 5114 . . . 4  |-  ( E. x  e.  A  Rel  ( C  X.  B
)  ->  Rel  |^|_ x  e.  A  ( C  X.  B ) )
64, 5syl 16 . . 3  |-  ( A  =/=  (/)  ->  Rel  |^|_ x  e.  A  ( C  X.  B ) )
7 relxp 5100 . . 3  |-  Rel  ( C  X.  |^|_ x  e.  A  B )
86, 7jctil 537 . 2  |-  ( A  =/=  (/)  ->  ( Rel  ( C  X.  |^|_ x  e.  A  B )  /\  Rel  |^|_ x  e.  A  ( C  X.  B
) ) )
9 r19.28zv 3910 . . . . . 6  |-  ( A  =/=  (/)  ->  ( A. x  e.  A  (
y  e.  C  /\  z  e.  B )  <->  ( y  e.  C  /\  A. x  e.  A  z  e.  B ) ) )
109bicomd 201 . . . . 5  |-  ( A  =/=  (/)  ->  ( (
y  e.  C  /\  A. x  e.  A  z  e.  B )  <->  A. x  e.  A  ( y  e.  C  /\  z  e.  B ) ) )
11 vex 3098 . . . . . . 7  |-  z  e. 
_V
12 eliin 4321 . . . . . . 7  |-  ( z  e.  _V  ->  (
z  e.  |^|_ x  e.  A  B  <->  A. x  e.  A  z  e.  B ) )
1311, 12ax-mp 5 . . . . . 6  |-  ( z  e.  |^|_ x  e.  A  B 
<-> 
A. x  e.  A  z  e.  B )
1413anbi2i 694 . . . . 5  |-  ( ( y  e.  C  /\  z  e.  |^|_ x  e.  A  B )  <->  ( y  e.  C  /\  A. x  e.  A  z  e.  B ) )
15 opelxp 5019 . . . . . 6  |-  ( <.
y ,  z >.  e.  ( C  X.  B
)  <->  ( y  e.  C  /\  z  e.  B ) )
1615ralbii 2874 . . . . 5  |-  ( A. x  e.  A  <. y ,  z >.  e.  ( C  X.  B )  <->  A. x  e.  A  ( y  e.  C  /\  z  e.  B
) )
1710, 14, 163bitr4g 288 . . . 4  |-  ( A  =/=  (/)  ->  ( (
y  e.  C  /\  z  e.  |^|_ x  e.  A  B )  <->  A. x  e.  A  <. y ,  z >.  e.  ( C  X.  B ) ) )
18 opelxp 5019 . . . 4  |-  ( <.
y ,  z >.  e.  ( C  X.  |^|_ x  e.  A  B )  <-> 
( y  e.  C  /\  z  e.  |^|_ x  e.  A  B )
)
19 opex 4701 . . . . 5  |-  <. y ,  z >.  e.  _V
20 eliin 4321 . . . . 5  |-  ( <.
y ,  z >.  e.  _V  ->  ( <. y ,  z >.  e.  |^|_ x  e.  A  ( C  X.  B )  <->  A. x  e.  A  <. y ,  z >.  e.  ( C  X.  B ) ) )
2119, 20ax-mp 5 . . . 4  |-  ( <.
y ,  z >.  e.  |^|_ x  e.  A  ( C  X.  B
)  <->  A. x  e.  A  <. y ,  z >.  e.  ( C  X.  B
) )
2217, 18, 213bitr4g 288 . . 3  |-  ( A  =/=  (/)  ->  ( <. y ,  z >.  e.  ( C  X.  |^|_ x  e.  A  B )  <->  <.
y ,  z >.  e.  |^|_ x  e.  A  ( C  X.  B
) ) )
2322eqrelrdv2 5092 . 2  |-  ( ( ( Rel  ( C  X.  |^|_ x  e.  A  B )  /\  Rel  |^|_
x  e.  A  ( C  X.  B ) )  /\  A  =/=  (/) )  ->  ( C  X.  |^|_ x  e.  A  B )  =  |^|_ x  e.  A  ( C  X.  B ) )
248, 23mpancom 669 1  |-  ( A  =/=  (/)  ->  ( C  X.  |^|_ x  e.  A  B )  =  |^|_ x  e.  A  ( C  X.  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1383    e. wcel 1804    =/= wne 2638   A.wral 2793   E.wrex 2794   _Vcvv 3095   (/)c0 3770   <.cop 4020   |^|_ciin 4316    X. cxp 4987   Rel wrel 4994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-sep 4558  ax-nul 4566  ax-pr 4676
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-ral 2798  df-rex 2799  df-rab 2802  df-v 3097  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3771  df-if 3927  df-sn 4015  df-pr 4017  df-op 4021  df-iin 4318  df-opab 4496  df-xp 4995  df-rel 4996
This theorem is referenced by:  xpriindi  5129
  Copyright terms: Public domain W3C validator