Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpidtr Structured version   Unicode version

Theorem xpidtr 5210
 Description: A square Cartesian product is a transitive relation. (Contributed by FL, 31-Jul-2009.)
Assertion
Ref Expression
xpidtr

Proof of Theorem xpidtr
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brxp 4854 . . . . . 6
2 brxp 4854 . . . . . . . . 9
3 brxp 4854 . . . . . . . . . . 11
43simplbi2com 625 . . . . . . . . . 10
54adantl 464 . . . . . . . . 9
62, 5sylbi 195 . . . . . . . 8
76com12 29 . . . . . . 7
87adantr 463 . . . . . 6
91, 8sylbi 195 . . . . 5
109imp 427 . . . 4
1110ax-gen 1639 . . 3
1211gen2 1640 . 2
13 cotr 5200 . 2
1412, 13mpbir 209 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wa 367  wal 1403   wcel 1842   wss 3414   class class class wbr 4395   cxp 4821   ccom 4827 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4517  ax-nul 4525  ax-pr 4630 This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2759  df-rex 2760  df-rab 2763  df-v 3061  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-nul 3739  df-if 3886  df-sn 3973  df-pr 3975  df-op 3979  df-br 4396  df-opab 4454  df-xp 4829  df-rel 4830  df-co 4832 This theorem is referenced by:  trinxp  5213  xpider  7419  trust  21024
 Copyright terms: Public domain W3C validator