MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpider Structured version   Unicode version

Theorem xpider 7419
Description: A square Cartesian product is an equivalence relation (in general it's not a poset). (Contributed by FL, 31-Jul-2009.) (Revised by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
xpider  |-  ( A  X.  A )  Er  A

Proof of Theorem xpider
StepHypRef Expression
1 relxp 4931 . 2  |-  Rel  ( A  X.  A )
2 dmxpid 5043 . 2  |-  dom  ( A  X.  A )  =  A
3 cnvxp 5242 . . 3  |-  `' ( A  X.  A )  =  ( A  X.  A )
4 xpidtr 5210 . . 3  |-  ( ( A  X.  A )  o.  ( A  X.  A ) )  C_  ( A  X.  A
)
5 uneq1 3590 . . . 4  |-  ( `' ( A  X.  A
)  =  ( A  X.  A )  -> 
( `' ( A  X.  A )  u.  ( A  X.  A
) )  =  ( ( A  X.  A
)  u.  ( A  X.  A ) ) )
6 unss2 3614 . . . 4  |-  ( ( ( A  X.  A
)  o.  ( A  X.  A ) ) 
C_  ( A  X.  A )  ->  ( `' ( A  X.  A )  u.  (
( A  X.  A
)  o.  ( A  X.  A ) ) )  C_  ( `' ( A  X.  A
)  u.  ( A  X.  A ) ) )
7 unidm 3586 . . . . 5  |-  ( ( A  X.  A )  u.  ( A  X.  A ) )  =  ( A  X.  A
)
8 eqtr 2428 . . . . . 6  |-  ( ( ( `' ( A  X.  A )  u.  ( A  X.  A
) )  =  ( ( A  X.  A
)  u.  ( A  X.  A ) )  /\  ( ( A  X.  A )  u.  ( A  X.  A
) )  =  ( A  X.  A ) )  ->  ( `' ( A  X.  A
)  u.  ( A  X.  A ) )  =  ( A  X.  A ) )
9 sseq2 3464 . . . . . . 7  |-  ( ( `' ( A  X.  A )  u.  ( A  X.  A ) )  =  ( A  X.  A )  ->  (
( `' ( A  X.  A )  u.  ( ( A  X.  A )  o.  ( A  X.  A ) ) )  C_  ( `' ( A  X.  A
)  u.  ( A  X.  A ) )  <-> 
( `' ( A  X.  A )  u.  ( ( A  X.  A )  o.  ( A  X.  A ) ) )  C_  ( A  X.  A ) ) )
109biimpd 207 . . . . . 6  |-  ( ( `' ( A  X.  A )  u.  ( A  X.  A ) )  =  ( A  X.  A )  ->  (
( `' ( A  X.  A )  u.  ( ( A  X.  A )  o.  ( A  X.  A ) ) )  C_  ( `' ( A  X.  A
)  u.  ( A  X.  A ) )  ->  ( `' ( A  X.  A )  u.  ( ( A  X.  A )  o.  ( A  X.  A
) ) )  C_  ( A  X.  A
) ) )
118, 10syl 17 . . . . 5  |-  ( ( ( `' ( A  X.  A )  u.  ( A  X.  A
) )  =  ( ( A  X.  A
)  u.  ( A  X.  A ) )  /\  ( ( A  X.  A )  u.  ( A  X.  A
) )  =  ( A  X.  A ) )  ->  ( ( `' ( A  X.  A )  u.  (
( A  X.  A
)  o.  ( A  X.  A ) ) )  C_  ( `' ( A  X.  A
)  u.  ( A  X.  A ) )  ->  ( `' ( A  X.  A )  u.  ( ( A  X.  A )  o.  ( A  X.  A
) ) )  C_  ( A  X.  A
) ) )
127, 11mpan2 669 . . . 4  |-  ( ( `' ( A  X.  A )  u.  ( A  X.  A ) )  =  ( ( A  X.  A )  u.  ( A  X.  A
) )  ->  (
( `' ( A  X.  A )  u.  ( ( A  X.  A )  o.  ( A  X.  A ) ) )  C_  ( `' ( A  X.  A
)  u.  ( A  X.  A ) )  ->  ( `' ( A  X.  A )  u.  ( ( A  X.  A )  o.  ( A  X.  A
) ) )  C_  ( A  X.  A
) ) )
135, 6, 12syl2im 36 . . 3  |-  ( `' ( A  X.  A
)  =  ( A  X.  A )  -> 
( ( ( A  X.  A )  o.  ( A  X.  A
) )  C_  ( A  X.  A )  -> 
( `' ( A  X.  A )  u.  ( ( A  X.  A )  o.  ( A  X.  A ) ) )  C_  ( A  X.  A ) ) )
143, 4, 13mp2 9 . 2  |-  ( `' ( A  X.  A
)  u.  ( ( A  X.  A )  o.  ( A  X.  A ) ) ) 
C_  ( A  X.  A )
15 df-er 7348 . 2  |-  ( ( A  X.  A )  Er  A  <->  ( Rel  ( A  X.  A
)  /\  dom  ( A  X.  A )  =  A  /\  ( `' ( A  X.  A
)  u.  ( ( A  X.  A )  o.  ( A  X.  A ) ) ) 
C_  ( A  X.  A ) ) )
161, 2, 14, 15mpbir3an 1179 1  |-  ( A  X.  A )  Er  A
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1405    u. cun 3412    C_ wss 3414    X. cxp 4821   `'ccnv 4822   dom cdm 4823    o. ccom 4827   Rel wrel 4828    Er wer 7345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4517  ax-nul 4525  ax-pr 4630
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2759  df-rex 2760  df-rab 2763  df-v 3061  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-nul 3739  df-if 3886  df-sn 3973  df-pr 3975  df-op 3979  df-br 4396  df-opab 4454  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-er 7348
This theorem is referenced by:  riiner  7421  efglem  17058
  Copyright terms: Public domain W3C validator