MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpfi Structured version   Unicode version

Theorem xpfi 7579
Description: The Cartesian product of two finite sets is finite. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Mar-2015.)
Assertion
Ref Expression
xpfi  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( A  X.  B
)  e.  Fin )

Proof of Theorem xpfi
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpeq1 4850 . . . . 5  |-  ( x  =  (/)  ->  ( x  X.  B )  =  ( (/)  X.  B
) )
21eleq1d 2507 . . . 4  |-  ( x  =  (/)  ->  ( ( x  X.  B )  e.  Fin  <->  ( (/)  X.  B
)  e.  Fin )
)
32imbi2d 316 . . 3  |-  ( x  =  (/)  ->  ( ( B  e.  Fin  ->  ( x  X.  B )  e.  Fin )  <->  ( B  e.  Fin  ->  ( (/)  X.  B
)  e.  Fin )
) )
4 xpeq1 4850 . . . . 5  |-  ( x  =  ( y  \  { z } )  ->  ( x  X.  B )  =  ( ( y  \  {
z } )  X.  B ) )
54eleq1d 2507 . . . 4  |-  ( x  =  ( y  \  { z } )  ->  ( ( x  X.  B )  e. 
Fin 
<->  ( ( y  \  { z } )  X.  B )  e. 
Fin ) )
65imbi2d 316 . . 3  |-  ( x  =  ( y  \  { z } )  ->  ( ( B  e.  Fin  ->  (
x  X.  B )  e.  Fin )  <->  ( B  e.  Fin  ->  ( (
y  \  { z } )  X.  B
)  e.  Fin )
) )
7 xpeq1 4850 . . . . 5  |-  ( x  =  y  ->  (
x  X.  B )  =  ( y  X.  B ) )
87eleq1d 2507 . . . 4  |-  ( x  =  y  ->  (
( x  X.  B
)  e.  Fin  <->  ( y  X.  B )  e.  Fin ) )
98imbi2d 316 . . 3  |-  ( x  =  y  ->  (
( B  e.  Fin  ->  ( x  X.  B
)  e.  Fin )  <->  ( B  e.  Fin  ->  ( y  X.  B )  e.  Fin ) ) )
10 xpeq1 4850 . . . . 5  |-  ( x  =  A  ->  (
x  X.  B )  =  ( A  X.  B ) )
1110eleq1d 2507 . . . 4  |-  ( x  =  A  ->  (
( x  X.  B
)  e.  Fin  <->  ( A  X.  B )  e.  Fin ) )
1211imbi2d 316 . . 3  |-  ( x  =  A  ->  (
( B  e.  Fin  ->  ( x  X.  B
)  e.  Fin )  <->  ( B  e.  Fin  ->  ( A  X.  B )  e.  Fin ) ) )
13 0xp 4913 . . . . 5  |-  ( (/)  X.  B )  =  (/)
14 0fin 7536 . . . . 5  |-  (/)  e.  Fin
1513, 14eqeltri 2511 . . . 4  |-  ( (/)  X.  B )  e.  Fin
1615a1i 11 . . 3  |-  ( B  e.  Fin  ->  ( (/) 
X.  B )  e. 
Fin )
17 neq0 3644 . . . . . . 7  |-  ( -.  y  =  (/)  <->  E. w  w  e.  y )
18 sneq 3884 . . . . . . . . . . . . . . . 16  |-  ( z  =  w  ->  { z }  =  { w } )
1918difeq2d 3471 . . . . . . . . . . . . . . 15  |-  ( z  =  w  ->  (
y  \  { z } )  =  ( y  \  { w } ) )
2019xpeq1d 4859 . . . . . . . . . . . . . 14  |-  ( z  =  w  ->  (
( y  \  {
z } )  X.  B )  =  ( ( y  \  {
w } )  X.  B ) )
2120eleq1d 2507 . . . . . . . . . . . . 13  |-  ( z  =  w  ->  (
( ( y  \  { z } )  X.  B )  e. 
Fin 
<->  ( ( y  \  { w } )  X.  B )  e. 
Fin ) )
2221imbi2d 316 . . . . . . . . . . . 12  |-  ( z  =  w  ->  (
( B  e.  Fin  ->  ( ( y  \  { z } )  X.  B )  e. 
Fin )  <->  ( B  e.  Fin  ->  ( (
y  \  { w } )  X.  B
)  e.  Fin )
) )
2322rspcv 3066 . . . . . . . . . . 11  |-  ( w  e.  y  ->  ( A. z  e.  y 
( B  e.  Fin  ->  ( ( y  \  { z } )  X.  B )  e. 
Fin )  ->  ( B  e.  Fin  ->  (
( y  \  {
w } )  X.  B )  e.  Fin ) ) )
2423adantl 463 . . . . . . . . . 10  |-  ( ( ( y  e.  Fin  /\  B  e.  Fin )  /\  w  e.  y
)  ->  ( A. z  e.  y  ( B  e.  Fin  ->  (
( y  \  {
z } )  X.  B )  e.  Fin )  ->  ( B  e. 
Fin  ->  ( ( y 
\  { w }
)  X.  B )  e.  Fin ) ) )
25 pm2.27 39 . . . . . . . . . . 11  |-  ( B  e.  Fin  ->  (
( B  e.  Fin  ->  ( ( y  \  { w } )  X.  B )  e. 
Fin )  ->  (
( y  \  {
w } )  X.  B )  e.  Fin ) )
2625ad2antlr 721 . . . . . . . . . 10  |-  ( ( ( y  e.  Fin  /\  B  e.  Fin )  /\  w  e.  y
)  ->  ( ( B  e.  Fin  ->  (
( y  \  {
w } )  X.  B )  e.  Fin )  ->  ( ( y 
\  { w }
)  X.  B )  e.  Fin ) )
27 snex 4530 . . . . . . . . . . . . . . 15  |-  { w }  e.  _V
28 xpexg 6506 . . . . . . . . . . . . . . 15  |-  ( ( { w }  e.  _V  /\  B  e.  Fin )  ->  ( { w }  X.  B )  e. 
_V )
2927, 28mpan 665 . . . . . . . . . . . . . 14  |-  ( B  e.  Fin  ->  ( { w }  X.  B )  e.  _V )
30 id 22 . . . . . . . . . . . . . 14  |-  ( B  e.  Fin  ->  B  e.  Fin )
31 vex 2973 . . . . . . . . . . . . . . 15  |-  w  e. 
_V
32 2ndconst 6661 . . . . . . . . . . . . . . 15  |-  ( w  e.  _V  ->  ( 2nd  |`  ( { w }  X.  B ) ) : ( { w }  X.  B ) -1-1-onto-> B )
3331, 32mp1i 12 . . . . . . . . . . . . . 14  |-  ( B  e.  Fin  ->  ( 2nd  |`  ( { w }  X.  B ) ) : ( { w }  X.  B ) -1-1-onto-> B )
34 f1oen2g 7322 . . . . . . . . . . . . . 14  |-  ( ( ( { w }  X.  B )  e.  _V  /\  B  e.  Fin  /\  ( 2nd  |`  ( {
w }  X.  B
) ) : ( { w }  X.  B ) -1-1-onto-> B )  ->  ( { w }  X.  B )  ~~  B
)
3529, 30, 33, 34syl3anc 1213 . . . . . . . . . . . . 13  |-  ( B  e.  Fin  ->  ( { w }  X.  B )  ~~  B
)
36 enfii 7526 . . . . . . . . . . . . 13  |-  ( ( B  e.  Fin  /\  ( { w }  X.  B )  ~~  B
)  ->  ( {
w }  X.  B
)  e.  Fin )
3735, 36mpdan 663 . . . . . . . . . . . 12  |-  ( B  e.  Fin  ->  ( { w }  X.  B )  e.  Fin )
3837ad2antlr 721 . . . . . . . . . . 11  |-  ( ( ( y  e.  Fin  /\  B  e.  Fin )  /\  w  e.  y
)  ->  ( {
w }  X.  B
)  e.  Fin )
39 unfi 7575 . . . . . . . . . . . 12  |-  ( ( ( ( y  \  { w } )  X.  B )  e. 
Fin  /\  ( {
w }  X.  B
)  e.  Fin )  ->  ( ( ( y 
\  { w }
)  X.  B )  u.  ( { w }  X.  B ) )  e.  Fin )
40 xpundir 4888 . . . . . . . . . . . . . . . 16  |-  ( ( ( y  \  {
w } )  u. 
{ w } )  X.  B )  =  ( ( ( y 
\  { w }
)  X.  B )  u.  ( { w }  X.  B ) )
41 difsnid 4016 . . . . . . . . . . . . . . . . 17  |-  ( w  e.  y  ->  (
( y  \  {
w } )  u. 
{ w } )  =  y )
4241xpeq1d 4859 . . . . . . . . . . . . . . . 16  |-  ( w  e.  y  ->  (
( ( y  \  { w } )  u.  { w }
)  X.  B )  =  ( y  X.  B ) )
4340, 42syl5eqr 2487 . . . . . . . . . . . . . . 15  |-  ( w  e.  y  ->  (
( ( y  \  { w } )  X.  B )  u.  ( { w }  X.  B ) )  =  ( y  X.  B
) )
4443eleq1d 2507 . . . . . . . . . . . . . 14  |-  ( w  e.  y  ->  (
( ( ( y 
\  { w }
)  X.  B )  u.  ( { w }  X.  B ) )  e.  Fin  <->  ( y  X.  B )  e.  Fin ) )
4544biimpd 207 . . . . . . . . . . . . 13  |-  ( w  e.  y  ->  (
( ( ( y 
\  { w }
)  X.  B )  u.  ( { w }  X.  B ) )  e.  Fin  ->  (
y  X.  B )  e.  Fin ) )
4645adantl 463 . . . . . . . . . . . 12  |-  ( ( ( y  e.  Fin  /\  B  e.  Fin )  /\  w  e.  y
)  ->  ( (
( ( y  \  { w } )  X.  B )  u.  ( { w }  X.  B ) )  e. 
Fin  ->  ( y  X.  B )  e.  Fin ) )
4739, 46syl5 32 . . . . . . . . . . 11  |-  ( ( ( y  e.  Fin  /\  B  e.  Fin )  /\  w  e.  y
)  ->  ( (
( ( y  \  { w } )  X.  B )  e. 
Fin  /\  ( {
w }  X.  B
)  e.  Fin )  ->  ( y  X.  B
)  e.  Fin )
)
4838, 47mpan2d 669 . . . . . . . . . 10  |-  ( ( ( y  e.  Fin  /\  B  e.  Fin )  /\  w  e.  y
)  ->  ( (
( y  \  {
w } )  X.  B )  e.  Fin  ->  ( y  X.  B
)  e.  Fin )
)
4924, 26, 483syld 55 . . . . . . . . 9  |-  ( ( ( y  e.  Fin  /\  B  e.  Fin )  /\  w  e.  y
)  ->  ( A. z  e.  y  ( B  e.  Fin  ->  (
( y  \  {
z } )  X.  B )  e.  Fin )  ->  ( y  X.  B )  e.  Fin ) )
5049ex 434 . . . . . . . 8  |-  ( ( y  e.  Fin  /\  B  e.  Fin )  ->  ( w  e.  y  ->  ( A. z  e.  y  ( B  e.  Fin  ->  ( (
y  \  { z } )  X.  B
)  e.  Fin )  ->  ( y  X.  B
)  e.  Fin )
) )
5150exlimdv 1695 . . . . . . 7  |-  ( ( y  e.  Fin  /\  B  e.  Fin )  ->  ( E. w  w  e.  y  ->  ( A. z  e.  y 
( B  e.  Fin  ->  ( ( y  \  { z } )  X.  B )  e. 
Fin )  ->  (
y  X.  B )  e.  Fin ) ) )
5217, 51syl5bi 217 . . . . . 6  |-  ( ( y  e.  Fin  /\  B  e.  Fin )  ->  ( -.  y  =  (/)  ->  ( A. z  e.  y  ( B  e.  Fin  ->  ( (
y  \  { z } )  X.  B
)  e.  Fin )  ->  ( y  X.  B
)  e.  Fin )
) )
53 xpeq1 4850 . . . . . . . 8  |-  ( y  =  (/)  ->  ( y  X.  B )  =  ( (/)  X.  B
) )
5453, 15syl6eqel 2529 . . . . . . 7  |-  ( y  =  (/)  ->  ( y  X.  B )  e. 
Fin )
5554a1d 25 . . . . . 6  |-  ( y  =  (/)  ->  ( A. z  e.  y  ( B  e.  Fin  ->  (
( y  \  {
z } )  X.  B )  e.  Fin )  ->  ( y  X.  B )  e.  Fin ) )
5652, 55pm2.61d2 160 . . . . 5  |-  ( ( y  e.  Fin  /\  B  e.  Fin )  ->  ( A. z  e.  y  ( B  e. 
Fin  ->  ( ( y 
\  { z } )  X.  B )  e.  Fin )  -> 
( y  X.  B
)  e.  Fin )
)
5756ex 434 . . . 4  |-  ( y  e.  Fin  ->  ( B  e.  Fin  ->  ( A. z  e.  y 
( B  e.  Fin  ->  ( ( y  \  { z } )  X.  B )  e. 
Fin )  ->  (
y  X.  B )  e.  Fin ) ) )
5857com23 78 . . 3  |-  ( y  e.  Fin  ->  ( A. z  e.  y 
( B  e.  Fin  ->  ( ( y  \  { z } )  X.  B )  e. 
Fin )  ->  ( B  e.  Fin  ->  (
y  X.  B )  e.  Fin ) ) )
593, 6, 9, 12, 16, 58findcard 7547 . 2  |-  ( A  e.  Fin  ->  ( B  e.  Fin  ->  ( A  X.  B )  e. 
Fin ) )
6059imp 429 1  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( A  X.  B
)  e.  Fin )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1364   E.wex 1591    e. wcel 1761   A.wral 2713   _Vcvv 2970    \ cdif 3322    u. cun 3323   (/)c0 3634   {csn 3874   class class class wbr 4289    X. cxp 4834    |` cres 4838   -1-1-onto->wf1o 5414   2ndc2nd 6575    ~~ cen 7303   Fincfn 7306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-1o 6916  df-oadd 6920  df-er 7097  df-en 7307  df-fin 7310
This theorem is referenced by:  mapfi  7603  fsuppxpfi  7633  infxpenlem  8176  ackbij1lem9  8393  ackbij1lem10  8394  hashxplem  12191  hashmap  12193  fsum2dlem  13233  fsumcom2  13237  ackbijnn  13287  rexpen  13506  crt  13849  phimullem  13850  prmreclem3  13975  ablfaclem3  16578  gsumdixpOLD  16690  gsumdixp  16691  gsumbagdiag  17424  psrass1lem  17425  mplsubrglemOLD  17496  evlslem2  17573  frlmbas3  18160  mamudm  18247  mamufacex  18248  mamures  18249  gsumcom3fi  18259  mamucl  18260  mamudiagcl  18261  mamudi  18266  mamudir  18267  mamuvs1  18268  mamuvs2  18269  matsca2  18280  matbas2  18281  matplusg2  18286  matvsca2  18287  mattposcl  18296  mdetrsca  18369  mdetunilem9  18385  tsmsxplem1  19686  tsmsxplem2  19687  tsmsxp  19688  i1fadd  21132  i1fmul  21133  itg1addlem4  21136  fsumdvdsmul  22494  fsumvma  22511  lgsquadlem1  22652  lgsquadlem2  22653  lgsquadlem3  22654  relfi  25875  sibfof  26656  erdszelem10  27018  fprod2dlem  27420  fprodcom2  27424  cntotbnd  28620  pellex  29101  3xpfi  30091  2spotfi  30336  matplusgcell  30743  matsubgcell  30744  matvscacell  30745
  Copyright terms: Public domain W3C validator