MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpfi Structured version   Unicode version

Theorem xpfi 7783
Description: The Cartesian product of two finite sets is finite. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Mar-2015.)
Assertion
Ref Expression
xpfi  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( A  X.  B
)  e.  Fin )

Proof of Theorem xpfi
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpeq1 5002 . . . . 5  |-  ( x  =  (/)  ->  ( x  X.  B )  =  ( (/)  X.  B
) )
21eleq1d 2523 . . . 4  |-  ( x  =  (/)  ->  ( ( x  X.  B )  e.  Fin  <->  ( (/)  X.  B
)  e.  Fin )
)
32imbi2d 314 . . 3  |-  ( x  =  (/)  ->  ( ( B  e.  Fin  ->  ( x  X.  B )  e.  Fin )  <->  ( B  e.  Fin  ->  ( (/)  X.  B
)  e.  Fin )
) )
4 xpeq1 5002 . . . . 5  |-  ( x  =  ( y  \  { z } )  ->  ( x  X.  B )  =  ( ( y  \  {
z } )  X.  B ) )
54eleq1d 2523 . . . 4  |-  ( x  =  ( y  \  { z } )  ->  ( ( x  X.  B )  e. 
Fin 
<->  ( ( y  \  { z } )  X.  B )  e. 
Fin ) )
65imbi2d 314 . . 3  |-  ( x  =  ( y  \  { z } )  ->  ( ( B  e.  Fin  ->  (
x  X.  B )  e.  Fin )  <->  ( B  e.  Fin  ->  ( (
y  \  { z } )  X.  B
)  e.  Fin )
) )
7 xpeq1 5002 . . . . 5  |-  ( x  =  y  ->  (
x  X.  B )  =  ( y  X.  B ) )
87eleq1d 2523 . . . 4  |-  ( x  =  y  ->  (
( x  X.  B
)  e.  Fin  <->  ( y  X.  B )  e.  Fin ) )
98imbi2d 314 . . 3  |-  ( x  =  y  ->  (
( B  e.  Fin  ->  ( x  X.  B
)  e.  Fin )  <->  ( B  e.  Fin  ->  ( y  X.  B )  e.  Fin ) ) )
10 xpeq1 5002 . . . . 5  |-  ( x  =  A  ->  (
x  X.  B )  =  ( A  X.  B ) )
1110eleq1d 2523 . . . 4  |-  ( x  =  A  ->  (
( x  X.  B
)  e.  Fin  <->  ( A  X.  B )  e.  Fin ) )
1211imbi2d 314 . . 3  |-  ( x  =  A  ->  (
( B  e.  Fin  ->  ( x  X.  B
)  e.  Fin )  <->  ( B  e.  Fin  ->  ( A  X.  B )  e.  Fin ) ) )
13 0xp 5069 . . . . 5  |-  ( (/)  X.  B )  =  (/)
14 0fin 7740 . . . . 5  |-  (/)  e.  Fin
1513, 14eqeltri 2538 . . . 4  |-  ( (/)  X.  B )  e.  Fin
1615a1i 11 . . 3  |-  ( B  e.  Fin  ->  ( (/) 
X.  B )  e. 
Fin )
17 neq0 3794 . . . . . . 7  |-  ( -.  y  =  (/)  <->  E. w  w  e.  y )
18 sneq 4026 . . . . . . . . . . . . . . . 16  |-  ( z  =  w  ->  { z }  =  { w } )
1918difeq2d 3608 . . . . . . . . . . . . . . 15  |-  ( z  =  w  ->  (
y  \  { z } )  =  ( y  \  { w } ) )
2019xpeq1d 5011 . . . . . . . . . . . . . 14  |-  ( z  =  w  ->  (
( y  \  {
z } )  X.  B )  =  ( ( y  \  {
w } )  X.  B ) )
2120eleq1d 2523 . . . . . . . . . . . . 13  |-  ( z  =  w  ->  (
( ( y  \  { z } )  X.  B )  e. 
Fin 
<->  ( ( y  \  { w } )  X.  B )  e. 
Fin ) )
2221imbi2d 314 . . . . . . . . . . . 12  |-  ( z  =  w  ->  (
( B  e.  Fin  ->  ( ( y  \  { z } )  X.  B )  e. 
Fin )  <->  ( B  e.  Fin  ->  ( (
y  \  { w } )  X.  B
)  e.  Fin )
) )
2322rspcv 3203 . . . . . . . . . . 11  |-  ( w  e.  y  ->  ( A. z  e.  y 
( B  e.  Fin  ->  ( ( y  \  { z } )  X.  B )  e. 
Fin )  ->  ( B  e.  Fin  ->  (
( y  \  {
w } )  X.  B )  e.  Fin ) ) )
2423adantl 464 . . . . . . . . . 10  |-  ( ( ( y  e.  Fin  /\  B  e.  Fin )  /\  w  e.  y
)  ->  ( A. z  e.  y  ( B  e.  Fin  ->  (
( y  \  {
z } )  X.  B )  e.  Fin )  ->  ( B  e. 
Fin  ->  ( ( y 
\  { w }
)  X.  B )  e.  Fin ) ) )
25 pm2.27 39 . . . . . . . . . . 11  |-  ( B  e.  Fin  ->  (
( B  e.  Fin  ->  ( ( y  \  { w } )  X.  B )  e. 
Fin )  ->  (
( y  \  {
w } )  X.  B )  e.  Fin ) )
2625ad2antlr 724 . . . . . . . . . 10  |-  ( ( ( y  e.  Fin  /\  B  e.  Fin )  /\  w  e.  y
)  ->  ( ( B  e.  Fin  ->  (
( y  \  {
w } )  X.  B )  e.  Fin )  ->  ( ( y 
\  { w }
)  X.  B )  e.  Fin ) )
27 snex 4678 . . . . . . . . . . . . . . 15  |-  { w }  e.  _V
28 xpexg 6575 . . . . . . . . . . . . . . 15  |-  ( ( { w }  e.  _V  /\  B  e.  Fin )  ->  ( { w }  X.  B )  e. 
_V )
2927, 28mpan 668 . . . . . . . . . . . . . 14  |-  ( B  e.  Fin  ->  ( { w }  X.  B )  e.  _V )
30 id 22 . . . . . . . . . . . . . 14  |-  ( B  e.  Fin  ->  B  e.  Fin )
31 vex 3109 . . . . . . . . . . . . . . 15  |-  w  e. 
_V
32 2ndconst 6862 . . . . . . . . . . . . . . 15  |-  ( w  e.  _V  ->  ( 2nd  |`  ( { w }  X.  B ) ) : ( { w }  X.  B ) -1-1-onto-> B )
3331, 32mp1i 12 . . . . . . . . . . . . . 14  |-  ( B  e.  Fin  ->  ( 2nd  |`  ( { w }  X.  B ) ) : ( { w }  X.  B ) -1-1-onto-> B )
34 f1oen2g 7525 . . . . . . . . . . . . . 14  |-  ( ( ( { w }  X.  B )  e.  _V  /\  B  e.  Fin  /\  ( 2nd  |`  ( {
w }  X.  B
) ) : ( { w }  X.  B ) -1-1-onto-> B )  ->  ( { w }  X.  B )  ~~  B
)
3529, 30, 33, 34syl3anc 1226 . . . . . . . . . . . . 13  |-  ( B  e.  Fin  ->  ( { w }  X.  B )  ~~  B
)
36 enfii 7730 . . . . . . . . . . . . 13  |-  ( ( B  e.  Fin  /\  ( { w }  X.  B )  ~~  B
)  ->  ( {
w }  X.  B
)  e.  Fin )
3735, 36mpdan 666 . . . . . . . . . . . 12  |-  ( B  e.  Fin  ->  ( { w }  X.  B )  e.  Fin )
3837ad2antlr 724 . . . . . . . . . . 11  |-  ( ( ( y  e.  Fin  /\  B  e.  Fin )  /\  w  e.  y
)  ->  ( {
w }  X.  B
)  e.  Fin )
39 unfi 7779 . . . . . . . . . . . 12  |-  ( ( ( ( y  \  { w } )  X.  B )  e. 
Fin  /\  ( {
w }  X.  B
)  e.  Fin )  ->  ( ( ( y 
\  { w }
)  X.  B )  u.  ( { w }  X.  B ) )  e.  Fin )
40 xpundir 5042 . . . . . . . . . . . . . . . 16  |-  ( ( ( y  \  {
w } )  u. 
{ w } )  X.  B )  =  ( ( ( y 
\  { w }
)  X.  B )  u.  ( { w }  X.  B ) )
41 difsnid 4162 . . . . . . . . . . . . . . . . 17  |-  ( w  e.  y  ->  (
( y  \  {
w } )  u. 
{ w } )  =  y )
4241xpeq1d 5011 . . . . . . . . . . . . . . . 16  |-  ( w  e.  y  ->  (
( ( y  \  { w } )  u.  { w }
)  X.  B )  =  ( y  X.  B ) )
4340, 42syl5eqr 2509 . . . . . . . . . . . . . . 15  |-  ( w  e.  y  ->  (
( ( y  \  { w } )  X.  B )  u.  ( { w }  X.  B ) )  =  ( y  X.  B
) )
4443eleq1d 2523 . . . . . . . . . . . . . 14  |-  ( w  e.  y  ->  (
( ( ( y 
\  { w }
)  X.  B )  u.  ( { w }  X.  B ) )  e.  Fin  <->  ( y  X.  B )  e.  Fin ) )
4544biimpd 207 . . . . . . . . . . . . 13  |-  ( w  e.  y  ->  (
( ( ( y 
\  { w }
)  X.  B )  u.  ( { w }  X.  B ) )  e.  Fin  ->  (
y  X.  B )  e.  Fin ) )
4645adantl 464 . . . . . . . . . . . 12  |-  ( ( ( y  e.  Fin  /\  B  e.  Fin )  /\  w  e.  y
)  ->  ( (
( ( y  \  { w } )  X.  B )  u.  ( { w }  X.  B ) )  e. 
Fin  ->  ( y  X.  B )  e.  Fin ) )
4739, 46syl5 32 . . . . . . . . . . 11  |-  ( ( ( y  e.  Fin  /\  B  e.  Fin )  /\  w  e.  y
)  ->  ( (
( ( y  \  { w } )  X.  B )  e. 
Fin  /\  ( {
w }  X.  B
)  e.  Fin )  ->  ( y  X.  B
)  e.  Fin )
)
4838, 47mpan2d 672 . . . . . . . . . 10  |-  ( ( ( y  e.  Fin  /\  B  e.  Fin )  /\  w  e.  y
)  ->  ( (
( y  \  {
w } )  X.  B )  e.  Fin  ->  ( y  X.  B
)  e.  Fin )
)
4924, 26, 483syld 55 . . . . . . . . 9  |-  ( ( ( y  e.  Fin  /\  B  e.  Fin )  /\  w  e.  y
)  ->  ( A. z  e.  y  ( B  e.  Fin  ->  (
( y  \  {
z } )  X.  B )  e.  Fin )  ->  ( y  X.  B )  e.  Fin ) )
5049ex 432 . . . . . . . 8  |-  ( ( y  e.  Fin  /\  B  e.  Fin )  ->  ( w  e.  y  ->  ( A. z  e.  y  ( B  e.  Fin  ->  ( (
y  \  { z } )  X.  B
)  e.  Fin )  ->  ( y  X.  B
)  e.  Fin )
) )
5150exlimdv 1729 . . . . . . 7  |-  ( ( y  e.  Fin  /\  B  e.  Fin )  ->  ( E. w  w  e.  y  ->  ( A. z  e.  y 
( B  e.  Fin  ->  ( ( y  \  { z } )  X.  B )  e. 
Fin )  ->  (
y  X.  B )  e.  Fin ) ) )
5217, 51syl5bi 217 . . . . . 6  |-  ( ( y  e.  Fin  /\  B  e.  Fin )  ->  ( -.  y  =  (/)  ->  ( A. z  e.  y  ( B  e.  Fin  ->  ( (
y  \  { z } )  X.  B
)  e.  Fin )  ->  ( y  X.  B
)  e.  Fin )
) )
53 xpeq1 5002 . . . . . . . 8  |-  ( y  =  (/)  ->  ( y  X.  B )  =  ( (/)  X.  B
) )
5453, 15syl6eqel 2550 . . . . . . 7  |-  ( y  =  (/)  ->  ( y  X.  B )  e. 
Fin )
5554a1d 25 . . . . . 6  |-  ( y  =  (/)  ->  ( A. z  e.  y  ( B  e.  Fin  ->  (
( y  \  {
z } )  X.  B )  e.  Fin )  ->  ( y  X.  B )  e.  Fin ) )
5652, 55pm2.61d2 160 . . . . 5  |-  ( ( y  e.  Fin  /\  B  e.  Fin )  ->  ( A. z  e.  y  ( B  e. 
Fin  ->  ( ( y 
\  { z } )  X.  B )  e.  Fin )  -> 
( y  X.  B
)  e.  Fin )
)
5756ex 432 . . . 4  |-  ( y  e.  Fin  ->  ( B  e.  Fin  ->  ( A. z  e.  y 
( B  e.  Fin  ->  ( ( y  \  { z } )  X.  B )  e. 
Fin )  ->  (
y  X.  B )  e.  Fin ) ) )
5857com23 78 . . 3  |-  ( y  e.  Fin  ->  ( A. z  e.  y 
( B  e.  Fin  ->  ( ( y  \  { z } )  X.  B )  e. 
Fin )  ->  ( B  e.  Fin  ->  (
y  X.  B )  e.  Fin ) ) )
593, 6, 9, 12, 16, 58findcard 7751 . 2  |-  ( A  e.  Fin  ->  ( B  e.  Fin  ->  ( A  X.  B )  e. 
Fin ) )
6059imp 427 1  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( A  X.  B
)  e.  Fin )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 367    = wceq 1398   E.wex 1617    e. wcel 1823   A.wral 2804   _Vcvv 3106    \ cdif 3458    u. cun 3459   (/)c0 3783   {csn 4016   class class class wbr 4439    X. cxp 4986    |` cres 4990   -1-1-onto->wf1o 5569   2ndc2nd 6772    ~~ cen 7506   Fincfn 7509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-reu 2811  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-1o 7122  df-oadd 7126  df-er 7303  df-en 7510  df-fin 7513
This theorem is referenced by:  3xpfi  7784  mapfi  7808  fsuppxpfi  7838  infxpenlem  8382  ackbij1lem9  8599  ackbij1lem10  8600  hashxplem  12475  hashmap  12477  fsum2dlem  13667  fsumcom2  13671  ackbijnn  13722  fprod2dlem  13866  fprodcom2  13870  rexpen  14045  crt  14392  phimullem  14393  prmreclem3  14520  ablfaclem3  17333  gsumdixpOLD  17452  gsumdixp  17453  gsumbagdiag  18223  psrass1lem  18224  mplsubrglemOLD  18296  evlslem2  18375  frlmbas3  18978  mamudm  19057  mamufacex  19058  mamures  19059  gsumcom3fi  19069  mamucl  19070  mamudi  19072  mamudir  19073  mamuvs1  19074  mamuvs2  19075  matsca2  19089  matbas2  19090  matplusg2  19096  matvsca2  19097  matplusgcell  19102  matsubgcell  19103  matvscacell  19105  matgsum  19106  mamumat1cl  19108  mattposcl  19122  mdetrsca  19272  mdetunilem9  19289  pmatcoe1fsupp  19369  tsmsxplem1  20821  tsmsxplem2  20822  tsmsxp  20823  i1fadd  22268  i1fmul  22269  itg1addlem4  22272  fsumdvdsmul  23669  fsumvma  23686  lgsquadlem1  23827  lgsquadlem2  23828  lgsquadlem3  23829  relfi  27673  sibfof  28546  erdszelem10  28908  cntotbnd  30532  pellex  31010  fourierdlem42  32170  etransclem44  32300  etransclem45  32301  etransclem47  32303
  Copyright terms: Public domain W3C validator