MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpexgALT Structured version   Unicode version

Theorem xpexgALT 6692
Description: Alternate proof of xpexg 6501 requiring Replacement (ax-rep 4478) but not Power Set (ax-pow 4543). (Contributed by Mario Carneiro, 20-May-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
xpexgALT  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  X.  B
)  e.  _V )

Proof of Theorem xpexgALT
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iunid 4298 . . . 4  |-  U_ y  e.  B  { y }  =  B
21xpeq2i 4934 . . 3  |-  ( A  X.  U_ y  e.  B  { y } )  =  ( A  X.  B )
3 xpiundi 4968 . . 3  |-  ( A  X.  U_ y  e.  B  { y } )  =  U_ y  e.  B  ( A  X.  { y } )
42, 3eqtr3i 2413 . 2  |-  ( A  X.  B )  = 
U_ y  e.  B  ( A  X.  { y } )
5 id 22 . . 3  |-  ( B  e.  W  ->  B  e.  W )
6 fconstmpt 4957 . . . . 5  |-  ( A  X.  { y } )  =  ( x  e.  A  |->  y )
7 mptexg 6043 . . . . 5  |-  ( A  e.  V  ->  (
x  e.  A  |->  y )  e.  _V )
86, 7syl5eqel 2474 . . . 4  |-  ( A  e.  V  ->  ( A  X.  { y } )  e.  _V )
98ralrimivw 2797 . . 3  |-  ( A  e.  V  ->  A. y  e.  B  ( A  X.  { y } )  e.  _V )
10 iunexg 6675 . . 3  |-  ( ( B  e.  W  /\  A. y  e.  B  ( A  X.  { y } )  e.  _V )  ->  U_ y  e.  B  ( A  X.  { y } )  e.  _V )
115, 9, 10syl2anr 476 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  U_ y  e.  B  ( A  X.  { y } )  e.  _V )
124, 11syl5eqel 2474 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  X.  B
)  e.  _V )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    e. wcel 1826   A.wral 2732   _Vcvv 3034   {csn 3944   U_ciun 4243    |-> cmpt 4425    X. cxp 4911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-rep 4478  ax-sep 4488  ax-nul 4496  ax-pr 4601  ax-un 6491
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1402  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-ral 2737  df-rex 2738  df-reu 2739  df-rab 2741  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-nul 3712  df-if 3858  df-sn 3945  df-pr 3947  df-op 3951  df-uni 4164  df-iun 4245  df-br 4368  df-opab 4426  df-mpt 4427  df-id 4709  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-f1 5501  df-fo 5502  df-f1o 5503  df-fv 5504
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator