MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpdom2g Structured version   Unicode version

Theorem xpdom2g 7611
Description: Dominance law for Cartesian product. Theorem 6L(c) of [Enderton] p. 149. (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
xpdom2g  |-  ( ( C  e.  V  /\  A  ~<_  B )  -> 
( C  X.  A
)  ~<_  ( C  X.  B ) )

Proof of Theorem xpdom2g
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 xpeq1 4999 . . . . 5  |-  ( x  =  C  ->  (
x  X.  A )  =  ( C  X.  A ) )
2 xpeq1 4999 . . . . 5  |-  ( x  =  C  ->  (
x  X.  B )  =  ( C  X.  B ) )
31, 2breq12d 4446 . . . 4  |-  ( x  =  C  ->  (
( x  X.  A
)  ~<_  ( x  X.  B )  <->  ( C  X.  A )  ~<_  ( C  X.  B ) ) )
43imbi2d 316 . . 3  |-  ( x  =  C  ->  (
( A  ~<_  B  -> 
( x  X.  A
)  ~<_  ( x  X.  B ) )  <->  ( A  ~<_  B  ->  ( C  X.  A )  ~<_  ( C  X.  B ) ) ) )
5 vex 3096 . . . 4  |-  x  e. 
_V
65xpdom2 7610 . . 3  |-  ( A  ~<_  B  ->  ( x  X.  A )  ~<_  ( x  X.  B ) )
74, 6vtoclg 3151 . 2  |-  ( C  e.  V  ->  ( A  ~<_  B  ->  ( C  X.  A )  ~<_  ( C  X.  B ) ) )
87imp 429 1  |-  ( ( C  e.  V  /\  A  ~<_  B )  -> 
( C  X.  A
)  ~<_  ( C  X.  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1381    e. wcel 1802   class class class wbr 4433    X. cxp 4983    ~<_ cdom 7512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-sep 4554  ax-nul 4562  ax-pow 4611  ax-pr 4672  ax-un 6573
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-ral 2796  df-rex 2797  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3418  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-nul 3768  df-if 3923  df-pw 3995  df-sn 4011  df-pr 4013  df-op 4017  df-uni 4231  df-br 4434  df-opab 4492  df-mpt 4493  df-id 4781  df-xp 4991  df-rel 4992  df-cnv 4993  df-co 4994  df-dm 4995  df-rn 4996  df-res 4997  df-ima 4998  df-iota 5537  df-fun 5576  df-fn 5577  df-f 5578  df-f1 5579  df-fv 5582  df-dom 7516
This theorem is referenced by:  xpdom1g  7612  xpen  7678  infcdaabs  8584  infxpdom  8589  fin56  8771  unirnfdomd  8940  pwcdandom  9043  gchxpidm  9045  gchhar  9055  fnct  27401
  Copyright terms: Public domain W3C validator