Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpdom1 Structured version   Unicode version

Theorem xpdom1 7635
 Description: Dominance law for Cartesian product. Theorem 6L(c) of [Enderton] p. 149. (Contributed by NM, 28-Sep-2004.) (Revised by NM, 29-Mar-2006.) (Revised by Mario Carneiro, 7-May-2015.)
Hypothesis
Ref Expression
xpdom1.2
Assertion
Ref Expression
xpdom1

Proof of Theorem xpdom1
StepHypRef Expression
1 xpdom1.2 . 2
2 xpdom1g 7633 . 2
31, 2mpan 670 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wcel 1819  cvv 3109   class class class wbr 4456   cxp 5006   cdom 7533 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-1st 6799  df-2nd 6800  df-en 7536  df-dom 7537 This theorem is referenced by:  cdadom1  8583  uniimadom  8936  unirnfdomd  8959  alephreg  8974  inar1  9170  2ndcctbss  20082  tx1stc  20277  tx2ndc  20278  mbfimaopnlem  22188
 Copyright terms: Public domain W3C validator