MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpcan2 Structured version   Unicode version

Theorem xpcan2 5435
Description: Cancellation law for Cartesian product. (Contributed by NM, 30-Aug-2011.)
Assertion
Ref Expression
xpcan2  |-  ( C  =/=  (/)  ->  ( ( A  X.  C )  =  ( B  X.  C
)  <->  A  =  B
) )

Proof of Theorem xpcan2
StepHypRef Expression
1 xp11 5433 . . 3  |-  ( ( A  =/=  (/)  /\  C  =/=  (/) )  ->  (
( A  X.  C
)  =  ( B  X.  C )  <->  ( A  =  B  /\  C  =  C ) ) )
2 eqid 2460 . . . 4  |-  C  =  C
32biantru 505 . . 3  |-  ( A  =  B  <->  ( A  =  B  /\  C  =  C ) )
41, 3syl6bbr 263 . 2  |-  ( ( A  =/=  (/)  /\  C  =/=  (/) )  ->  (
( A  X.  C
)  =  ( B  X.  C )  <->  A  =  B ) )
5 nne 2661 . . 3  |-  ( -.  A  =/=  (/)  <->  A  =  (/) )
6 simpl 457 . . . . 5  |-  ( ( A  =  (/)  /\  C  =/=  (/) )  ->  A  =  (/) )
7 xpeq1 5006 . . . . . . . . . 10  |-  ( A  =  (/)  ->  ( A  X.  C )  =  ( (/)  X.  C
) )
8 0xp 5071 . . . . . . . . . 10  |-  ( (/)  X.  C )  =  (/)
97, 8syl6eq 2517 . . . . . . . . 9  |-  ( A  =  (/)  ->  ( A  X.  C )  =  (/) )
109eqeq1d 2462 . . . . . . . 8  |-  ( A  =  (/)  ->  ( ( A  X.  C )  =  ( B  X.  C )  <->  (/)  =  ( B  X.  C ) ) )
11 eqcom 2469 . . . . . . . 8  |-  ( (/)  =  ( B  X.  C )  <->  ( B  X.  C )  =  (/) )
1210, 11syl6bb 261 . . . . . . 7  |-  ( A  =  (/)  ->  ( ( A  X.  C )  =  ( B  X.  C )  <->  ( B  X.  C )  =  (/) ) )
1312adantr 465 . . . . . 6  |-  ( ( A  =  (/)  /\  C  =/=  (/) )  ->  (
( A  X.  C
)  =  ( B  X.  C )  <->  ( B  X.  C )  =  (/) ) )
14 df-ne 2657 . . . . . . . 8  |-  ( C  =/=  (/)  <->  -.  C  =  (/) )
15 xpeq0 5418 . . . . . . . . 9  |-  ( ( B  X.  C )  =  (/)  <->  ( B  =  (/)  \/  C  =  (/) ) )
16 orel2 383 . . . . . . . . 9  |-  ( -.  C  =  (/)  ->  (
( B  =  (/)  \/  C  =  (/) )  ->  B  =  (/) ) )
1715, 16syl5bi 217 . . . . . . . 8  |-  ( -.  C  =  (/)  ->  (
( B  X.  C
)  =  (/)  ->  B  =  (/) ) )
1814, 17sylbi 195 . . . . . . 7  |-  ( C  =/=  (/)  ->  ( ( B  X.  C )  =  (/)  ->  B  =  (/) ) )
1918adantl 466 . . . . . 6  |-  ( ( A  =  (/)  /\  C  =/=  (/) )  ->  (
( B  X.  C
)  =  (/)  ->  B  =  (/) ) )
2013, 19sylbid 215 . . . . 5  |-  ( ( A  =  (/)  /\  C  =/=  (/) )  ->  (
( A  X.  C
)  =  ( B  X.  C )  ->  B  =  (/) ) )
21 eqtr3 2488 . . . . 5  |-  ( ( A  =  (/)  /\  B  =  (/) )  ->  A  =  B )
226, 20, 21syl6an 545 . . . 4  |-  ( ( A  =  (/)  /\  C  =/=  (/) )  ->  (
( A  X.  C
)  =  ( B  X.  C )  ->  A  =  B )
)
23 xpeq1 5006 . . . 4  |-  ( A  =  B  ->  ( A  X.  C )  =  ( B  X.  C
) )
2422, 23impbid1 203 . . 3  |-  ( ( A  =  (/)  /\  C  =/=  (/) )  ->  (
( A  X.  C
)  =  ( B  X.  C )  <->  A  =  B ) )
255, 24sylanb 472 . 2  |-  ( ( -.  A  =/=  (/)  /\  C  =/=  (/) )  ->  (
( A  X.  C
)  =  ( B  X.  C )  <->  A  =  B ) )
264, 25pm2.61ian 788 1  |-  ( C  =/=  (/)  ->  ( ( A  X.  C )  =  ( B  X.  C
)  <->  A  =  B
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1374    =/= wne 2655   (/)c0 3778    X. cxp 4990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-sep 4561  ax-nul 4569  ax-pr 4679
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3108  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-nul 3779  df-if 3933  df-sn 4021  df-pr 4023  df-op 4027  df-br 4441  df-opab 4499  df-xp 4998  df-rel 4999  df-cnv 5000  df-dm 5002  df-rn 5003
This theorem is referenced by:  vcoprnelem  24997
  Copyright terms: Public domain W3C validator