MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmulcom Structured version   Unicode version

Theorem xmulcom 11225
Description: Extended real multiplication is commutative. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmulcom  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A xe B )  =  ( B xe A ) )

Proof of Theorem xmulcom
StepHypRef Expression
1 xmullem 11223 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR* )  /\  -.  ( A  =  0  \/  B  =  0
) )  /\  -.  ( ( ( 0  <  B  /\  A  = +oo )  \/  ( B  <  0  /\  A  = -oo ) )  \/  ( ( 0  < 
A  /\  B  = +oo )  \/  ( A  <  0  /\  B  = -oo ) ) ) )  /\  -.  (
( ( 0  < 
B  /\  A  = -oo )  \/  ( B  <  0  /\  A  = +oo ) )  \/  ( ( 0  < 
A  /\  B  = -oo )  \/  ( A  <  0  /\  B  = +oo ) ) ) )  ->  A  e.  RR )
21recnd 9408 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR* )  /\  -.  ( A  =  0  \/  B  =  0
) )  /\  -.  ( ( ( 0  <  B  /\  A  = +oo )  \/  ( B  <  0  /\  A  = -oo ) )  \/  ( ( 0  < 
A  /\  B  = +oo )  \/  ( A  <  0  /\  B  = -oo ) ) ) )  /\  -.  (
( ( 0  < 
B  /\  A  = -oo )  \/  ( B  <  0  /\  A  = +oo ) )  \/  ( ( 0  < 
A  /\  B  = -oo )  \/  ( A  <  0  /\  B  = +oo ) ) ) )  ->  A  e.  CC )
3 ancom 448 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  <->  ( B  e.  RR*  /\  A  e. 
RR* ) )
4 orcom 387 . . . . . . . . . . . . . 14  |-  ( ( A  =  0  \/  B  =  0 )  <-> 
( B  =  0  \/  A  =  0 ) )
54notbii 296 . . . . . . . . . . . . 13  |-  ( -.  ( A  =  0  \/  B  =  0 )  <->  -.  ( B  =  0  \/  A  =  0 ) )
63, 5anbi12i 692 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  -.  ( A  =  0  \/  B  =  0 ) )  <->  ( ( B  e.  RR*  /\  A  e.  RR* )  /\  -.  ( B  =  0  \/  A  =  0
) ) )
7 orcom 387 . . . . . . . . . . . . 13  |-  ( ( ( ( 0  < 
B  /\  A  = +oo )  \/  ( B  <  0  /\  A  = -oo ) )  \/  ( ( 0  < 
A  /\  B  = +oo )  \/  ( A  <  0  /\  B  = -oo ) ) )  <-> 
( ( ( 0  <  A  /\  B  = +oo )  \/  ( A  <  0  /\  B  = -oo ) )  \/  ( ( 0  < 
B  /\  A  = +oo )  \/  ( B  <  0  /\  A  = -oo ) ) ) )
87notbii 296 . . . . . . . . . . . 12  |-  ( -.  ( ( ( 0  <  B  /\  A  = +oo )  \/  ( B  <  0  /\  A  = -oo ) )  \/  ( ( 0  < 
A  /\  B  = +oo )  \/  ( A  <  0  /\  B  = -oo ) ) )  <->  -.  ( ( ( 0  <  A  /\  B  = +oo )  \/  ( A  <  0  /\  B  = -oo ) )  \/  ( ( 0  < 
B  /\  A  = +oo )  \/  ( B  <  0  /\  A  = -oo ) ) ) )
96, 8anbi12i 692 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  -.  ( A  =  0  \/  B  =  0 ) )  /\  -.  (
( ( 0  < 
B  /\  A  = +oo )  \/  ( B  <  0  /\  A  = -oo ) )  \/  ( ( 0  < 
A  /\  B  = +oo )  \/  ( A  <  0  /\  B  = -oo ) ) ) )  <->  ( ( ( B  e.  RR*  /\  A  e.  RR* )  /\  -.  ( B  =  0  \/  A  =  0
) )  /\  -.  ( ( ( 0  <  A  /\  B  = +oo )  \/  ( A  <  0  /\  B  = -oo ) )  \/  ( ( 0  < 
B  /\  A  = +oo )  \/  ( B  <  0  /\  A  = -oo ) ) ) ) )
10 orcom 387 . . . . . . . . . . . 12  |-  ( ( ( ( 0  < 
B  /\  A  = -oo )  \/  ( B  <  0  /\  A  = +oo ) )  \/  ( ( 0  < 
A  /\  B  = -oo )  \/  ( A  <  0  /\  B  = +oo ) ) )  <-> 
( ( ( 0  <  A  /\  B  = -oo )  \/  ( A  <  0  /\  B  = +oo ) )  \/  ( ( 0  < 
B  /\  A  = -oo )  \/  ( B  <  0  /\  A  = +oo ) ) ) )
1110notbii 296 . . . . . . . . . . 11  |-  ( -.  ( ( ( 0  <  B  /\  A  = -oo )  \/  ( B  <  0  /\  A  = +oo ) )  \/  ( ( 0  < 
A  /\  B  = -oo )  \/  ( A  <  0  /\  B  = +oo ) ) )  <->  -.  ( ( ( 0  <  A  /\  B  = -oo )  \/  ( A  <  0  /\  B  = +oo ) )  \/  ( ( 0  < 
B  /\  A  = -oo )  \/  ( B  <  0  /\  A  = +oo ) ) ) )
12 xmullem 11223 . . . . . . . . . . 11  |-  ( ( ( ( ( B  e.  RR*  /\  A  e. 
RR* )  /\  -.  ( B  =  0  \/  A  =  0
) )  /\  -.  ( ( ( 0  <  A  /\  B  = +oo )  \/  ( A  <  0  /\  B  = -oo ) )  \/  ( ( 0  < 
B  /\  A  = +oo )  \/  ( B  <  0  /\  A  = -oo ) ) ) )  /\  -.  (
( ( 0  < 
A  /\  B  = -oo )  \/  ( A  <  0  /\  B  = +oo ) )  \/  ( ( 0  < 
B  /\  A  = -oo )  \/  ( B  <  0  /\  A  = +oo ) ) ) )  ->  B  e.  RR )
139, 11, 12syl2anb 476 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR* )  /\  -.  ( A  =  0  \/  B  =  0
) )  /\  -.  ( ( ( 0  <  B  /\  A  = +oo )  \/  ( B  <  0  /\  A  = -oo ) )  \/  ( ( 0  < 
A  /\  B  = +oo )  \/  ( A  <  0  /\  B  = -oo ) ) ) )  /\  -.  (
( ( 0  < 
B  /\  A  = -oo )  \/  ( B  <  0  /\  A  = +oo ) )  \/  ( ( 0  < 
A  /\  B  = -oo )  \/  ( A  <  0  /\  B  = +oo ) ) ) )  ->  B  e.  RR )
1413recnd 9408 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR* )  /\  -.  ( A  =  0  \/  B  =  0
) )  /\  -.  ( ( ( 0  <  B  /\  A  = +oo )  \/  ( B  <  0  /\  A  = -oo ) )  \/  ( ( 0  < 
A  /\  B  = +oo )  \/  ( A  <  0  /\  B  = -oo ) ) ) )  /\  -.  (
( ( 0  < 
B  /\  A  = -oo )  \/  ( B  <  0  /\  A  = +oo ) )  \/  ( ( 0  < 
A  /\  B  = -oo )  \/  ( A  <  0  /\  B  = +oo ) ) ) )  ->  B  e.  CC )
152, 14mulcomd 9403 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR* )  /\  -.  ( A  =  0  \/  B  =  0
) )  /\  -.  ( ( ( 0  <  B  /\  A  = +oo )  \/  ( B  <  0  /\  A  = -oo ) )  \/  ( ( 0  < 
A  /\  B  = +oo )  \/  ( A  <  0  /\  B  = -oo ) ) ) )  /\  -.  (
( ( 0  < 
B  /\  A  = -oo )  \/  ( B  <  0  /\  A  = +oo ) )  \/  ( ( 0  < 
A  /\  B  = -oo )  \/  ( A  <  0  /\  B  = +oo ) ) ) )  ->  ( A  x.  B )  =  ( B  x.  A ) )
1615ifeq2da 3817 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  -.  ( A  =  0  \/  B  =  0 ) )  /\  -.  (
( ( 0  < 
B  /\  A  = +oo )  \/  ( B  <  0  /\  A  = -oo ) )  \/  ( ( 0  < 
A  /\  B  = +oo )  \/  ( A  <  0  /\  B  = -oo ) ) ) )  ->  if (
( ( ( 0  <  B  /\  A  = -oo )  \/  ( B  <  0  /\  A  = +oo ) )  \/  ( ( 0  < 
A  /\  B  = -oo )  \/  ( A  <  0  /\  B  = +oo ) ) ) , -oo ,  ( A  x.  B ) )  =  if ( ( ( ( 0  <  B  /\  A  = -oo )  \/  ( B  <  0  /\  A  = +oo ) )  \/  ( ( 0  < 
A  /\  B  = -oo )  \/  ( A  <  0  /\  B  = +oo ) ) ) , -oo ,  ( B  x.  A ) ) )
1710a1i 11 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  -.  ( A  =  0  \/  B  =  0 ) )  /\  -.  (
( ( 0  < 
B  /\  A  = +oo )  \/  ( B  <  0  /\  A  = -oo ) )  \/  ( ( 0  < 
A  /\  B  = +oo )  \/  ( A  <  0  /\  B  = -oo ) ) ) )  ->  ( (
( ( 0  < 
B  /\  A  = -oo )  \/  ( B  <  0  /\  A  = +oo ) )  \/  ( ( 0  < 
A  /\  B  = -oo )  \/  ( A  <  0  /\  B  = +oo ) ) )  <-> 
( ( ( 0  <  A  /\  B  = -oo )  \/  ( A  <  0  /\  B  = +oo ) )  \/  ( ( 0  < 
B  /\  A  = -oo )  \/  ( B  <  0  /\  A  = +oo ) ) ) ) )
1817ifbid 3808 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  -.  ( A  =  0  \/  B  =  0 ) )  /\  -.  (
( ( 0  < 
B  /\  A  = +oo )  \/  ( B  <  0  /\  A  = -oo ) )  \/  ( ( 0  < 
A  /\  B  = +oo )  \/  ( A  <  0  /\  B  = -oo ) ) ) )  ->  if (
( ( ( 0  <  B  /\  A  = -oo )  \/  ( B  <  0  /\  A  = +oo ) )  \/  ( ( 0  < 
A  /\  B  = -oo )  \/  ( A  <  0  /\  B  = +oo ) ) ) , -oo ,  ( B  x.  A ) )  =  if ( ( ( ( 0  <  A  /\  B  = -oo )  \/  ( A  <  0  /\  B  = +oo ) )  \/  ( ( 0  < 
B  /\  A  = -oo )  \/  ( B  <  0  /\  A  = +oo ) ) ) , -oo ,  ( B  x.  A ) ) )
1916, 18eqtrd 2473 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  -.  ( A  =  0  \/  B  =  0 ) )  /\  -.  (
( ( 0  < 
B  /\  A  = +oo )  \/  ( B  <  0  /\  A  = -oo ) )  \/  ( ( 0  < 
A  /\  B  = +oo )  \/  ( A  <  0  /\  B  = -oo ) ) ) )  ->  if (
( ( ( 0  <  B  /\  A  = -oo )  \/  ( B  <  0  /\  A  = +oo ) )  \/  ( ( 0  < 
A  /\  B  = -oo )  \/  ( A  <  0  /\  B  = +oo ) ) ) , -oo ,  ( A  x.  B ) )  =  if ( ( ( ( 0  <  A  /\  B  = -oo )  \/  ( A  <  0  /\  B  = +oo ) )  \/  ( ( 0  < 
B  /\  A  = -oo )  \/  ( B  <  0  /\  A  = +oo ) ) ) , -oo ,  ( B  x.  A ) ) )
2019ifeq2da 3817 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  -.  ( A  =  0  \/  B  =  0 ) )  ->  if ( ( ( ( 0  <  B  /\  A  = +oo )  \/  ( B  <  0  /\  A  = -oo ) )  \/  (
( 0  <  A  /\  B  = +oo )  \/  ( A  <  0  /\  B  = -oo ) ) ) , +oo ,  if ( ( ( ( 0  <  B  /\  A  = -oo )  \/  ( B  <  0  /\  A  = +oo ) )  \/  (
( 0  <  A  /\  B  = -oo )  \/  ( A  <  0  /\  B  = +oo ) ) ) , -oo ,  ( A  x.  B ) ) )  =  if ( ( ( ( 0  <  B  /\  A  = +oo )  \/  ( B  <  0  /\  A  = -oo ) )  \/  (
( 0  <  A  /\  B  = +oo )  \/  ( A  <  0  /\  B  = -oo ) ) ) , +oo ,  if ( ( ( ( 0  <  A  /\  B  = -oo )  \/  ( A  <  0  /\  B  = +oo ) )  \/  (
( 0  <  B  /\  A  = -oo )  \/  ( B  <  0  /\  A  = +oo ) ) ) , -oo ,  ( B  x.  A ) ) ) )
217a1i 11 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  -.  ( A  =  0  \/  B  =  0 ) )  -> 
( ( ( ( 0  <  B  /\  A  = +oo )  \/  ( B  <  0  /\  A  = -oo ) )  \/  (
( 0  <  A  /\  B  = +oo )  \/  ( A  <  0  /\  B  = -oo ) ) )  <-> 
( ( ( 0  <  A  /\  B  = +oo )  \/  ( A  <  0  /\  B  = -oo ) )  \/  ( ( 0  < 
B  /\  A  = +oo )  \/  ( B  <  0  /\  A  = -oo ) ) ) ) )
2221ifbid 3808 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  -.  ( A  =  0  \/  B  =  0 ) )  ->  if ( ( ( ( 0  <  B  /\  A  = +oo )  \/  ( B  <  0  /\  A  = -oo ) )  \/  (
( 0  <  A  /\  B  = +oo )  \/  ( A  <  0  /\  B  = -oo ) ) ) , +oo ,  if ( ( ( ( 0  <  A  /\  B  = -oo )  \/  ( A  <  0  /\  B  = +oo ) )  \/  (
( 0  <  B  /\  A  = -oo )  \/  ( B  <  0  /\  A  = +oo ) ) ) , -oo ,  ( B  x.  A ) ) )  =  if ( ( ( ( 0  <  A  /\  B  = +oo )  \/  ( A  <  0  /\  B  = -oo ) )  \/  (
( 0  <  B  /\  A  = +oo )  \/  ( B  <  0  /\  A  = -oo ) ) ) , +oo ,  if ( ( ( ( 0  <  A  /\  B  = -oo )  \/  ( A  <  0  /\  B  = +oo ) )  \/  (
( 0  <  B  /\  A  = -oo )  \/  ( B  <  0  /\  A  = +oo ) ) ) , -oo ,  ( B  x.  A ) ) ) )
2320, 22eqtrd 2473 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  -.  ( A  =  0  \/  B  =  0 ) )  ->  if ( ( ( ( 0  <  B  /\  A  = +oo )  \/  ( B  <  0  /\  A  = -oo ) )  \/  (
( 0  <  A  /\  B  = +oo )  \/  ( A  <  0  /\  B  = -oo ) ) ) , +oo ,  if ( ( ( ( 0  <  B  /\  A  = -oo )  \/  ( B  <  0  /\  A  = +oo ) )  \/  (
( 0  <  A  /\  B  = -oo )  \/  ( A  <  0  /\  B  = +oo ) ) ) , -oo ,  ( A  x.  B ) ) )  =  if ( ( ( ( 0  <  A  /\  B  = +oo )  \/  ( A  <  0  /\  B  = -oo ) )  \/  (
( 0  <  B  /\  A  = +oo )  \/  ( B  <  0  /\  A  = -oo ) ) ) , +oo ,  if ( ( ( ( 0  <  A  /\  B  = -oo )  \/  ( A  <  0  /\  B  = +oo ) )  \/  (
( 0  <  B  /\  A  = -oo )  \/  ( B  <  0  /\  A  = +oo ) ) ) , -oo ,  ( B  x.  A ) ) ) )
2423ifeq2da 3817 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  if ( ( A  =  0  \/  B  =  0 ) ,  0 ,  if ( ( ( ( 0  < 
B  /\  A  = +oo )  \/  ( B  <  0  /\  A  = -oo ) )  \/  ( ( 0  < 
A  /\  B  = +oo )  \/  ( A  <  0  /\  B  = -oo ) ) ) , +oo ,  if ( ( ( ( 0  <  B  /\  A  = -oo )  \/  ( B  <  0  /\  A  = +oo ) )  \/  (
( 0  <  A  /\  B  = -oo )  \/  ( A  <  0  /\  B  = +oo ) ) ) , -oo ,  ( A  x.  B ) ) ) )  =  if ( ( A  =  0  \/  B  =  0 ) ,  0 ,  if ( ( ( ( 0  <  A  /\  B  = +oo )  \/  ( A  <  0  /\  B  = -oo ) )  \/  ( ( 0  < 
B  /\  A  = +oo )  \/  ( B  <  0  /\  A  = -oo ) ) ) , +oo ,  if ( ( ( ( 0  <  A  /\  B  = -oo )  \/  ( A  <  0  /\  B  = +oo ) )  \/  (
( 0  <  B  /\  A  = -oo )  \/  ( B  <  0  /\  A  = +oo ) ) ) , -oo ,  ( B  x.  A ) ) ) ) )
254a1i 11 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( A  =  0  \/  B  =  0 )  <->  ( B  =  0  \/  A  =  0 ) ) )
2625ifbid 3808 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  if ( ( A  =  0  \/  B  =  0 ) ,  0 ,  if ( ( ( ( 0  < 
A  /\  B  = +oo )  \/  ( A  <  0  /\  B  = -oo ) )  \/  ( ( 0  < 
B  /\  A  = +oo )  \/  ( B  <  0  /\  A  = -oo ) ) ) , +oo ,  if ( ( ( ( 0  <  A  /\  B  = -oo )  \/  ( A  <  0  /\  B  = +oo ) )  \/  (
( 0  <  B  /\  A  = -oo )  \/  ( B  <  0  /\  A  = +oo ) ) ) , -oo ,  ( B  x.  A ) ) ) )  =  if ( ( B  =  0  \/  A  =  0 ) ,  0 ,  if ( ( ( ( 0  <  A  /\  B  = +oo )  \/  ( A  <  0  /\  B  = -oo ) )  \/  ( ( 0  < 
B  /\  A  = +oo )  \/  ( B  <  0  /\  A  = -oo ) ) ) , +oo ,  if ( ( ( ( 0  <  A  /\  B  = -oo )  \/  ( A  <  0  /\  B  = +oo ) )  \/  (
( 0  <  B  /\  A  = -oo )  \/  ( B  <  0  /\  A  = +oo ) ) ) , -oo ,  ( B  x.  A ) ) ) ) )
2724, 26eqtrd 2473 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  if ( ( A  =  0  \/  B  =  0 ) ,  0 ,  if ( ( ( ( 0  < 
B  /\  A  = +oo )  \/  ( B  <  0  /\  A  = -oo ) )  \/  ( ( 0  < 
A  /\  B  = +oo )  \/  ( A  <  0  /\  B  = -oo ) ) ) , +oo ,  if ( ( ( ( 0  <  B  /\  A  = -oo )  \/  ( B  <  0  /\  A  = +oo ) )  \/  (
( 0  <  A  /\  B  = -oo )  \/  ( A  <  0  /\  B  = +oo ) ) ) , -oo ,  ( A  x.  B ) ) ) )  =  if ( ( B  =  0  \/  A  =  0 ) ,  0 ,  if ( ( ( ( 0  <  A  /\  B  = +oo )  \/  ( A  <  0  /\  B  = -oo ) )  \/  ( ( 0  < 
B  /\  A  = +oo )  \/  ( B  <  0  /\  A  = -oo ) ) ) , +oo ,  if ( ( ( ( 0  <  A  /\  B  = -oo )  \/  ( A  <  0  /\  B  = +oo ) )  \/  (
( 0  <  B  /\  A  = -oo )  \/  ( B  <  0  /\  A  = +oo ) ) ) , -oo ,  ( B  x.  A ) ) ) ) )
28 xmulval 11191 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A xe B )  =  if ( ( A  =  0  \/  B  =  0 ) ,  0 ,  if ( ( ( ( 0  <  B  /\  A  = +oo )  \/  ( B  <  0  /\  A  = -oo ) )  \/  (
( 0  <  A  /\  B  = +oo )  \/  ( A  <  0  /\  B  = -oo ) ) ) , +oo ,  if ( ( ( ( 0  <  B  /\  A  = -oo )  \/  ( B  <  0  /\  A  = +oo ) )  \/  (
( 0  <  A  /\  B  = -oo )  \/  ( A  <  0  /\  B  = +oo ) ) ) , -oo ,  ( A  x.  B ) ) ) ) )
29 xmulval 11191 . . 3  |-  ( ( B  e.  RR*  /\  A  e.  RR* )  ->  ( B xe A )  =  if ( ( B  =  0  \/  A  =  0 ) ,  0 ,  if ( ( ( ( 0  <  A  /\  B  = +oo )  \/  ( A  <  0  /\  B  = -oo ) )  \/  (
( 0  <  B  /\  A  = +oo )  \/  ( B  <  0  /\  A  = -oo ) ) ) , +oo ,  if ( ( ( ( 0  <  A  /\  B  = -oo )  \/  ( A  <  0  /\  B  = +oo ) )  \/  (
( 0  <  B  /\  A  = -oo )  \/  ( B  <  0  /\  A  = +oo ) ) ) , -oo ,  ( B  x.  A ) ) ) ) )
3029ancoms 450 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( B xe A )  =  if ( ( B  =  0  \/  A  =  0 ) ,  0 ,  if ( ( ( ( 0  <  A  /\  B  = +oo )  \/  ( A  <  0  /\  B  = -oo ) )  \/  (
( 0  <  B  /\  A  = +oo )  \/  ( B  <  0  /\  A  = -oo ) ) ) , +oo ,  if ( ( ( ( 0  <  A  /\  B  = -oo )  \/  ( A  <  0  /\  B  = +oo ) )  \/  (
( 0  <  B  /\  A  = -oo )  \/  ( B  <  0  /\  A  = +oo ) ) ) , -oo ,  ( B  x.  A ) ) ) ) )
3127, 28, 303eqtr4d 2483 1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A xe B )  =  ( B xe A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1364    e. wcel 1761   ifcif 3788   class class class wbr 4289  (class class class)co 6090   RRcr 9277   0cc0 9278    x. cmul 9283   +oocpnf 9411   -oocmnf 9412   RR*cxr 9413    < clt 9414   xecxmu 11084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-i2m1 9346  ax-1ne0 9347  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-op 3881  df-uni 4089  df-br 4290  df-opab 4348  df-mpt 4349  df-id 4632  df-po 4637  df-so 4638  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-er 7097  df-en 7307  df-dom 7308  df-sdom 7309  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-xmul 11087
This theorem is referenced by:  xmul02  11227  xmulneg2  11229  xmulpnf2  11234  xmulmnf2  11236  xmulid2  11239  xlemul2a  11248  xlemul2  11250  xltmul2  11252  xadddir  11255  xadddi2r  11257  xrsmcmn  17798  xmulcand  26029  xdivrec  26035  xrge0adddi  26089  xrmulc1cn  26296  esummulc2  26467
  Copyright terms: Public domain W3C validator