MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmetunirn Structured version   Visualization version   Unicode version

Theorem xmetunirn 21430
Description: Two ways to express an extended metric on an unspecified base. (Contributed by Mario Carneiro, 13-Oct-2015.)
Assertion
Ref Expression
xmetunirn  |-  ( D  e.  U. ran  *Met 
<->  D  e.  ( *Met `  dom  dom  D ) )

Proof of Theorem xmetunirn
Dummy variables  x  y  z  w  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 6336 . . . . . 6  |-  ( RR*  ^m  ( x  X.  x
) )  e.  _V
21rabex 4550 . . . . 5  |-  { d  e.  ( RR*  ^m  (
x  X.  x ) )  |  A. y  e.  x  A. z  e.  x  ( (
( y d z )  =  0  <->  y  =  z )  /\  A. w  e.  x  ( y d z )  <_  ( ( w d y ) +e ( w d z ) ) ) }  e.  _V
3 df-xmet 19040 . . . . 5  |-  *Met  =  ( x  e. 
_V  |->  { d  e.  ( RR*  ^m  (
x  X.  x ) )  |  A. y  e.  x  A. z  e.  x  ( (
( y d z )  =  0  <->  y  =  z )  /\  A. w  e.  x  ( y d z )  <_  ( ( w d y ) +e ( w d z ) ) ) } )
42, 3fnmpti 5716 . . . 4  |-  *Met  Fn  _V
5 fnunirn 6176 . . . 4  |-  ( *Met  Fn  _V  ->  ( D  e.  U. ran  *Met  <->  E. x  e.  _V  D  e.  ( *Met `  x ) ) )
64, 5ax-mp 5 . . 3  |-  ( D  e.  U. ran  *Met 
<->  E. x  e.  _V  D  e.  ( *Met `  x ) )
7 id 22 . . . . 5  |-  ( D  e.  ( *Met `  x )  ->  D  e.  ( *Met `  x ) )
8 xmetdmdm 21428 . . . . . 6  |-  ( D  e.  ( *Met `  x )  ->  x  =  dom  dom  D )
98fveq2d 5883 . . . . 5  |-  ( D  e.  ( *Met `  x )  ->  ( *Met `  x )  =  ( *Met ` 
dom  dom  D ) )
107, 9eleqtrd 2551 . . . 4  |-  ( D  e.  ( *Met `  x )  ->  D  e.  ( *Met `  dom  dom  D ) )
1110rexlimivw 2869 . . 3  |-  ( E. x  e.  _V  D  e.  ( *Met `  x )  ->  D  e.  ( *Met `  dom  dom  D ) )
126, 11sylbi 200 . 2  |-  ( D  e.  U. ran  *Met  ->  D  e.  ( *Met `  dom  dom 
D ) )
13 fvssunirn 5902 . . 3  |-  ( *Met `  dom  dom  D )  C_  U. ran  *Met
1413sseli 3414 . 2  |-  ( D  e.  ( *Met ` 
dom  dom  D )  ->  D  e.  U. ran  *Met )
1512, 14impbii 192 1  |-  ( D  e.  U. ran  *Met 
<->  D  e.  ( *Met `  dom  dom  D ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 189    /\ wa 376    = wceq 1452    e. wcel 1904   A.wral 2756   E.wrex 2757   {crab 2760   _Vcvv 3031   U.cuni 4190   class class class wbr 4395    X. cxp 4837   dom cdm 4839   ran crn 4840    Fn wfn 5584   ` cfv 5589  (class class class)co 6308    ^m cmap 7490   0cc0 9557   RR*cxr 9692    <_ cle 9694   +ecxad 11430   *Metcxmt 19032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-cnex 9613  ax-resscn 9614
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-rab 2765  df-v 3033  df-sbc 3256  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-op 3966  df-uni 4191  df-br 4396  df-opab 4455  df-mpt 4456  df-id 4754  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-fv 5597  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-map 7492  df-xr 9697  df-xmet 19040
This theorem is referenced by:  isxms2  21541  setsmstopn  21571  tngtopn  21736  cfili  22316  cfilfcls  22322
  Copyright terms: Public domain W3C validator