MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmettri2 Structured version   Unicode version

Theorem xmettri2 19915
Description: Triangle inequality for the distance function of an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmettri2  |-  ( ( D  e.  ( *Met `  X )  /\  ( C  e.  X  /\  A  e.  X  /\  B  e.  X ) )  -> 
( A D B )  <_  ( ( C D A ) +e ( C D B ) ) )

Proof of Theorem xmettri2
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvdm 5716 . . . . . . . 8  |-  ( D  e.  ( *Met `  X )  ->  X  e.  dom  *Met )
2 isxmet 19899 . . . . . . . 8  |-  ( X  e.  dom  *Met  ->  ( D  e.  ( *Met `  X
)  <->  ( D :
( X  X.  X
) --> RR*  /\  A. x  e.  X  A. y  e.  X  ( (
( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x D y )  <_  ( ( z D x ) +e ( z D y ) ) ) ) ) )
31, 2syl 16 . . . . . . 7  |-  ( D  e.  ( *Met `  X )  ->  ( D  e.  ( *Met `  X )  <->  ( D : ( X  X.  X ) --> RR*  /\  A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x ) +e ( z D y ) ) ) ) ) )
43ibi 241 . . . . . 6  |-  ( D  e.  ( *Met `  X )  ->  ( D : ( X  X.  X ) --> RR*  /\  A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x ) +e ( z D y ) ) ) ) )
54simprd 463 . . . . 5  |-  ( D  e.  ( *Met `  X )  ->  A. x  e.  X  A. y  e.  X  ( (
( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x D y )  <_  ( ( z D x ) +e ( z D y ) ) ) )
6 simpr 461 . . . . . . 7  |-  ( ( ( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x ) +e ( z D y ) ) )  ->  A. z  e.  X  ( x D y )  <_ 
( ( z D x ) +e
( z D y ) ) )
76ralimi 2791 . . . . . 6  |-  ( A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x ) +e ( z D y ) ) )  ->  A. y  e.  X  A. z  e.  X  ( x D y )  <_ 
( ( z D x ) +e
( z D y ) ) )
87ralimi 2791 . . . . 5  |-  ( A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x ) +e ( z D y ) ) )  ->  A. x  e.  X  A. y  e.  X  A. z  e.  X  ( x D y )  <_ 
( ( z D x ) +e
( z D y ) ) )
95, 8syl 16 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  A. x  e.  X  A. y  e.  X  A. z  e.  X  ( x D y )  <_ 
( ( z D x ) +e
( z D y ) ) )
10 oveq1 6098 . . . . . 6  |-  ( x  =  A  ->  (
x D y )  =  ( A D y ) )
11 oveq2 6099 . . . . . . 7  |-  ( x  =  A  ->  (
z D x )  =  ( z D A ) )
1211oveq1d 6106 . . . . . 6  |-  ( x  =  A  ->  (
( z D x ) +e ( z D y ) )  =  ( ( z D A ) +e ( z D y ) ) )
1310, 12breq12d 4305 . . . . 5  |-  ( x  =  A  ->  (
( x D y )  <_  ( (
z D x ) +e ( z D y ) )  <-> 
( A D y )  <_  ( (
z D A ) +e ( z D y ) ) ) )
14 oveq2 6099 . . . . . 6  |-  ( y  =  B  ->  ( A D y )  =  ( A D B ) )
15 oveq2 6099 . . . . . . 7  |-  ( y  =  B  ->  (
z D y )  =  ( z D B ) )
1615oveq2d 6107 . . . . . 6  |-  ( y  =  B  ->  (
( z D A ) +e ( z D y ) )  =  ( ( z D A ) +e ( z D B ) ) )
1714, 16breq12d 4305 . . . . 5  |-  ( y  =  B  ->  (
( A D y )  <_  ( (
z D A ) +e ( z D y ) )  <-> 
( A D B )  <_  ( (
z D A ) +e ( z D B ) ) ) )
18 oveq1 6098 . . . . . . 7  |-  ( z  =  C  ->  (
z D A )  =  ( C D A ) )
19 oveq1 6098 . . . . . . 7  |-  ( z  =  C  ->  (
z D B )  =  ( C D B ) )
2018, 19oveq12d 6109 . . . . . 6  |-  ( z  =  C  ->  (
( z D A ) +e ( z D B ) )  =  ( ( C D A ) +e ( C D B ) ) )
2120breq2d 4304 . . . . 5  |-  ( z  =  C  ->  (
( A D B )  <_  ( (
z D A ) +e ( z D B ) )  <-> 
( A D B )  <_  ( ( C D A ) +e ( C D B ) ) ) )
2213, 17, 21rspc3v 3082 . . . 4  |-  ( ( A  e.  X  /\  B  e.  X  /\  C  e.  X )  ->  ( A. x  e.  X  A. y  e.  X  A. z  e.  X  ( x D y )  <_  (
( z D x ) +e ( z D y ) )  ->  ( A D B )  <_  (
( C D A ) +e ( C D B ) ) ) )
239, 22syl5 32 . . 3  |-  ( ( A  e.  X  /\  B  e.  X  /\  C  e.  X )  ->  ( D  e.  ( *Met `  X
)  ->  ( A D B )  <_  (
( C D A ) +e ( C D B ) ) ) )
24233comr 1195 . 2  |-  ( ( C  e.  X  /\  A  e.  X  /\  B  e.  X )  ->  ( D  e.  ( *Met `  X
)  ->  ( A D B )  <_  (
( C D A ) +e ( C D B ) ) ) )
2524impcom 430 1  |-  ( ( D  e.  ( *Met `  X )  /\  ( C  e.  X  /\  A  e.  X  /\  B  e.  X ) )  -> 
( A D B )  <_  ( ( C D A ) +e ( C D B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   A.wral 2715   class class class wbr 4292    X. cxp 4838   dom cdm 4840   -->wf 5414   ` cfv 5418  (class class class)co 6091   0cc0 9282   RR*cxr 9417    <_ cle 9419   +ecxad 11087   *Metcxmt 17801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-cnex 9338  ax-resscn 9339
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2720  df-rex 2721  df-rab 2724  df-v 2974  df-sbc 3187  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-op 3884  df-uni 4092  df-br 4293  df-opab 4351  df-mpt 4352  df-id 4636  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-fv 5426  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-map 7216  df-xr 9422  df-xmet 17810
This theorem is referenced by:  mettri2  19916  xmetge0  19919  xmetsym  19922  xmetpsmet  19923  xmettri  19926  xmetres2  19936  prdsxmetlem  19943  imasf1oxmet  19950  xblss2  19977  xmstri2  20041  comet  20088
  Copyright terms: Public domain W3C validator