MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmetsym Structured version   Unicode version

Theorem xmetsym 20723
Description: The distance function of an extended metric space is symmetric. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmetsym  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( A D B )  =  ( B D A ) )

Proof of Theorem xmetsym
StepHypRef Expression
1 simp1 997 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  D  e.  ( *Met `  X
) )
2 simp3 999 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  B  e.  X )
3 simp2 998 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  A  e.  X )
4 xmettri2 20716 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  ( B  e.  X  /\  A  e.  X  /\  B  e.  X ) )  -> 
( A D B )  <_  ( ( B D A ) +e ( B D B ) ) )
51, 2, 3, 2, 4syl13anc 1231 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( A D B )  <_  (
( B D A ) +e ( B D B ) ) )
6 xmet0 20718 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  B  e.  X
)  ->  ( B D B )  =  0 )
763adant2 1016 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( B D B )  =  0 )
87oveq2d 6297 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( ( B D A ) +e ( B D B ) )  =  ( ( B D A ) +e 0 ) )
9 xmetcl 20707 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  B  e.  X  /\  A  e.  X
)  ->  ( B D A )  e.  RR* )
10 xaddid1 11447 . . . . . 6  |-  ( ( B D A )  e.  RR*  ->  ( ( B D A ) +e 0 )  =  ( B D A ) )
119, 10syl 16 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  B  e.  X  /\  A  e.  X
)  ->  ( ( B D A ) +e 0 )  =  ( B D A ) )
12113com23 1203 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( ( B D A ) +e 0 )  =  ( B D A ) )
138, 12eqtrd 2484 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( ( B D A ) +e ( B D B ) )  =  ( B D A ) )
145, 13breqtrd 4461 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( A D B )  <_  ( B D A ) )
15 xmettri2 20716 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  A  e.  X ) )  -> 
( B D A )  <_  ( ( A D B ) +e ( A D A ) ) )
161, 3, 2, 3, 15syl13anc 1231 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( B D A )  <_  (
( A D B ) +e ( A D A ) ) )
17 xmet0 20718 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X
)  ->  ( A D A )  =  0 )
18173adant3 1017 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( A D A )  =  0 )
1918oveq2d 6297 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( ( A D B ) +e ( A D A ) )  =  ( ( A D B ) +e 0 ) )
20 xmetcl 20707 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( A D B )  e.  RR* )
21 xaddid1 11447 . . . . 5  |-  ( ( A D B )  e.  RR*  ->  ( ( A D B ) +e 0 )  =  ( A D B ) )
2220, 21syl 16 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( ( A D B ) +e 0 )  =  ( A D B ) )
2319, 22eqtrd 2484 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( ( A D B ) +e ( A D A ) )  =  ( A D B ) )
2416, 23breqtrd 4461 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( B D A )  <_  ( A D B ) )
2593com23 1203 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( B D A )  e.  RR* )
26 xrletri3 11367 . . 3  |-  ( ( ( A D B )  e.  RR*  /\  ( B D A )  e. 
RR* )  ->  (
( A D B )  =  ( B D A )  <->  ( ( A D B )  <_ 
( B D A )  /\  ( B D A )  <_ 
( A D B ) ) ) )
2720, 25, 26syl2anc 661 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( ( A D B )  =  ( B D A )  <->  ( ( A D B )  <_ 
( B D A )  /\  ( B D A )  <_ 
( A D B ) ) ) )
2814, 24, 27mpbir2and 922 1  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( A D B )  =  ( B D A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 974    = wceq 1383    e. wcel 1804   class class class wbr 4437   ` cfv 5578  (class class class)co 6281   0cc0 9495   RR*cxr 9630    <_ cle 9632   +ecxad 11325   *Metcxmt 18277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-op 4021  df-uni 4235  df-br 4438  df-opab 4496  df-mpt 4497  df-id 4785  df-po 4790  df-so 4791  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-er 7313  df-map 7424  df-en 7519  df-dom 7520  df-sdom 7521  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-xadd 11328  df-xmet 18286
This theorem is referenced by:  xmettpos  20725  metsym  20726  xmettri  20727  xmettri3  20729  xmetrtri2  20732  elbl3  20768  blss  20801  xmeter  20809  xmssym  20841  metcnp2  20918  metustsymOLD  20937  metdcnlem  21214  metdstri  21228  metdsle  21229  metdscn  21233  metnrmlem1  21236  metnrmlem3  21238  nmhmcn  21476  lmmbr2  21571  iscau2  21589  iscau3  21590  iscau4  21591  iscauf  21592  caucfil  21595  dvlip2  22269  nvlmle  25474  ubthlem1  25658  ubthlem2  25659  heicant  30024
  Copyright terms: Public domain W3C validator