MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmetsym Structured version   Unicode version

Theorem xmetsym 19902
Description: The distance function of an extended metric space is symmetric. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmetsym  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( A D B )  =  ( B D A ) )

Proof of Theorem xmetsym
StepHypRef Expression
1 simp1 988 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  D  e.  ( *Met `  X
) )
2 simp3 990 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  B  e.  X )
3 simp2 989 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  A  e.  X )
4 xmettri2 19895 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  ( B  e.  X  /\  A  e.  X  /\  B  e.  X ) )  -> 
( A D B )  <_  ( ( B D A ) +e ( B D B ) ) )
51, 2, 3, 2, 4syl13anc 1220 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( A D B )  <_  (
( B D A ) +e ( B D B ) ) )
6 xmet0 19897 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  B  e.  X
)  ->  ( B D B )  =  0 )
763adant2 1007 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( B D B )  =  0 )
87oveq2d 6102 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( ( B D A ) +e ( B D B ) )  =  ( ( B D A ) +e 0 ) )
9 xmetcl 19886 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  B  e.  X  /\  A  e.  X
)  ->  ( B D A )  e.  RR* )
10 xaddid1 11201 . . . . . 6  |-  ( ( B D A )  e.  RR*  ->  ( ( B D A ) +e 0 )  =  ( B D A ) )
119, 10syl 16 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  B  e.  X  /\  A  e.  X
)  ->  ( ( B D A ) +e 0 )  =  ( B D A ) )
12113com23 1193 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( ( B D A ) +e 0 )  =  ( B D A ) )
138, 12eqtrd 2470 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( ( B D A ) +e ( B D B ) )  =  ( B D A ) )
145, 13breqtrd 4311 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( A D B )  <_  ( B D A ) )
15 xmettri2 19895 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  A  e.  X ) )  -> 
( B D A )  <_  ( ( A D B ) +e ( A D A ) ) )
161, 3, 2, 3, 15syl13anc 1220 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( B D A )  <_  (
( A D B ) +e ( A D A ) ) )
17 xmet0 19897 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X
)  ->  ( A D A )  =  0 )
18173adant3 1008 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( A D A )  =  0 )
1918oveq2d 6102 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( ( A D B ) +e ( A D A ) )  =  ( ( A D B ) +e 0 ) )
20 xmetcl 19886 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( A D B )  e.  RR* )
21 xaddid1 11201 . . . . 5  |-  ( ( A D B )  e.  RR*  ->  ( ( A D B ) +e 0 )  =  ( A D B ) )
2220, 21syl 16 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( ( A D B ) +e 0 )  =  ( A D B ) )
2319, 22eqtrd 2470 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( ( A D B ) +e ( A D A ) )  =  ( A D B ) )
2416, 23breqtrd 4311 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( B D A )  <_  ( A D B ) )
2593com23 1193 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( B D A )  e.  RR* )
26 xrletri3 11121 . . 3  |-  ( ( ( A D B )  e.  RR*  /\  ( B D A )  e. 
RR* )  ->  (
( A D B )  =  ( B D A )  <->  ( ( A D B )  <_ 
( B D A )  /\  ( B D A )  <_ 
( A D B ) ) ) )
2720, 25, 26syl2anc 661 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( ( A D B )  =  ( B D A )  <->  ( ( A D B )  <_ 
( B D A )  /\  ( B D A )  <_ 
( A D B ) ) ) )
2814, 24, 27mpbir2and 913 1  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( A D B )  =  ( B D A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   class class class wbr 4287   ` cfv 5413  (class class class)co 6086   0cc0 9274   RR*cxr 9409    <_ cle 9411   +ecxad 11079   *Metcxmt 17781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-op 3879  df-uni 4087  df-br 4288  df-opab 4346  df-mpt 4347  df-id 4631  df-po 4636  df-so 4637  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-er 7093  df-map 7208  df-en 7303  df-dom 7304  df-sdom 7305  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-xadd 11082  df-xmet 17790
This theorem is referenced by:  xmettpos  19904  metsym  19905  xmettri  19906  xmettri3  19908  xmetrtri2  19911  elbl3  19947  blss  19980  xmeter  19988  xmssym  20020  metcnp2  20097  metustsymOLD  20116  metdcnlem  20393  metdstri  20407  metdsle  20408  metdscn  20412  metnrmlem1  20415  metnrmlem3  20417  nmhmcn  20655  lmmbr2  20750  iscau2  20768  iscau3  20769  iscau4  20770  iscauf  20771  caucfil  20774  dvlip2  21447  nvlmle  24055  ubthlem1  24239  ubthlem2  24240  heicant  28397
  Copyright terms: Public domain W3C validator