MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmetpsmet Structured version   Unicode version

Theorem xmetpsmet 19922
Description: An extended metric is a pseudometric. (Contributed by Thierry Arnoux, 7-Feb-2018.)
Assertion
Ref Expression
xmetpsmet  |-  ( D  e.  ( *Met `  X )  ->  D  e.  (PsMet `  X )
)

Proof of Theorem xmetpsmet
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xmetf 19903 . . 3  |-  ( D  e.  ( *Met `  X )  ->  D : ( X  X.  X ) --> RR* )
2 xmet0 19916 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  x  e.  X
)  ->  ( x D x )  =  0 )
3 3anrot 970 . . . . . . . . 9  |-  ( ( z  e.  X  /\  x  e.  X  /\  y  e.  X )  <->  ( x  e.  X  /\  y  e.  X  /\  z  e.  X )
)
4 xmettri2 19914 . . . . . . . . 9  |-  ( ( D  e.  ( *Met `  X )  /\  ( z  e.  X  /\  x  e.  X  /\  y  e.  X ) )  -> 
( x D y )  <_  ( (
z D x ) +e ( z D y ) ) )
53, 4sylan2br 476 . . . . . . . 8  |-  ( ( D  e.  ( *Met `  X )  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  -> 
( x D y )  <_  ( (
z D x ) +e ( z D y ) ) )
653anassrs 1209 . . . . . . 7  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  x  e.  X )  /\  y  e.  X )  /\  z  e.  X )  ->  (
x D y )  <_  ( ( z D x ) +e ( z D y ) ) )
76ralrimiva 2798 . . . . . 6  |-  ( ( ( D  e.  ( *Met `  X
)  /\  x  e.  X )  /\  y  e.  X )  ->  A. z  e.  X  ( x D y )  <_ 
( ( z D x ) +e
( z D y ) ) )
87ralrimiva 2798 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  x  e.  X
)  ->  A. y  e.  X  A. z  e.  X  ( x D y )  <_ 
( ( z D x ) +e
( z D y ) ) )
92, 8jca 532 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  x  e.  X
)  ->  ( (
x D x )  =  0  /\  A. y  e.  X  A. z  e.  X  (
x D y )  <_  ( ( z D x ) +e ( z D y ) ) ) )
109ralrimiva 2798 . . 3  |-  ( D  e.  ( *Met `  X )  ->  A. x  e.  X  ( (
x D x )  =  0  /\  A. y  e.  X  A. z  e.  X  (
x D y )  <_  ( ( z D x ) +e ( z D y ) ) ) )
111, 10jca 532 . 2  |-  ( D  e.  ( *Met `  X )  ->  ( D : ( X  X.  X ) --> RR*  /\  A. x  e.  X  (
( x D x )  =  0  /\ 
A. y  e.  X  A. z  e.  X  ( x D y )  <_  ( (
z D x ) +e ( z D y ) ) ) ) )
12 elfvex 5716 . . 3  |-  ( D  e.  ( *Met `  X )  ->  X  e.  _V )
13 ispsmet 19879 . . 3  |-  ( X  e.  _V  ->  ( D  e.  (PsMet `  X
)  <->  ( D :
( X  X.  X
) --> RR*  /\  A. x  e.  X  ( (
x D x )  =  0  /\  A. y  e.  X  A. z  e.  X  (
x D y )  <_  ( ( z D x ) +e ( z D y ) ) ) ) ) )
1412, 13syl 16 . 2  |-  ( D  e.  ( *Met `  X )  ->  ( D  e.  (PsMet `  X
)  <->  ( D :
( X  X.  X
) --> RR*  /\  A. x  e.  X  ( (
x D x )  =  0  /\  A. y  e.  X  A. z  e.  X  (
x D y )  <_  ( ( z D x ) +e ( z D y ) ) ) ) ) )
1511, 14mpbird 232 1  |-  ( D  e.  ( *Met `  X )  ->  D  e.  (PsMet `  X )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   A.wral 2714   _Vcvv 2971   class class class wbr 4291    X. cxp 4837   -->wf 5413   ` cfv 5417  (class class class)co 6090   0cc0 9281   RR*cxr 9416    <_ cle 9418   +ecxad 11086  PsMetcpsmet 17799   *Metcxmt 17800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4412  ax-nul 4420  ax-pow 4469  ax-pr 4530  ax-un 6371  ax-cnex 9337  ax-resscn 9338
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2719  df-rex 2720  df-rab 2723  df-v 2973  df-sbc 3186  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-nul 3637  df-if 3791  df-pw 3861  df-sn 3877  df-pr 3879  df-op 3883  df-uni 4091  df-br 4292  df-opab 4350  df-mpt 4351  df-id 4635  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-iota 5380  df-fun 5419  df-fn 5420  df-f 5421  df-fv 5425  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-map 7215  df-xr 9421  df-psmet 17808  df-xmet 17809
This theorem is referenced by:  blfval  19958  metustblOLD  20154  metutopOLD  20156  xmetutop  20158  xmsusp  20160  metucnOLD  20162  cfilucfil3  20829  cmetcusp  20865  cnflduss  20867  reust  20884  qqhucn  26420  heicant  28424
  Copyright terms: Public domain W3C validator