MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmetpsmet Structured version   Unicode version

Theorem xmetpsmet 20717
Description: An extended metric is a pseudometric. (Contributed by Thierry Arnoux, 7-Feb-2018.)
Assertion
Ref Expression
xmetpsmet  |-  ( D  e.  ( *Met `  X )  ->  D  e.  (PsMet `  X )
)

Proof of Theorem xmetpsmet
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xmetf 20698 . 2  |-  ( D  e.  ( *Met `  X )  ->  D : ( X  X.  X ) --> RR* )
2 xmet0 20711 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  x  e.  X
)  ->  ( x D x )  =  0 )
3 3anrot 978 . . . . . . . 8  |-  ( ( z  e.  X  /\  x  e.  X  /\  y  e.  X )  <->  ( x  e.  X  /\  y  e.  X  /\  z  e.  X )
)
4 xmettri2 20709 . . . . . . . 8  |-  ( ( D  e.  ( *Met `  X )  /\  ( z  e.  X  /\  x  e.  X  /\  y  e.  X ) )  -> 
( x D y )  <_  ( (
z D x ) +e ( z D y ) ) )
53, 4sylan2br 476 . . . . . . 7  |-  ( ( D  e.  ( *Met `  X )  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  -> 
( x D y )  <_  ( (
z D x ) +e ( z D y ) ) )
653anassrs 1218 . . . . . 6  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  x  e.  X )  /\  y  e.  X )  /\  z  e.  X )  ->  (
x D y )  <_  ( ( z D x ) +e ( z D y ) ) )
76ralrimiva 2881 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  x  e.  X )  /\  y  e.  X )  ->  A. z  e.  X  ( x D y )  <_ 
( ( z D x ) +e
( z D y ) ) )
87ralrimiva 2881 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  x  e.  X
)  ->  A. y  e.  X  A. z  e.  X  ( x D y )  <_ 
( ( z D x ) +e
( z D y ) ) )
92, 8jca 532 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  x  e.  X
)  ->  ( (
x D x )  =  0  /\  A. y  e.  X  A. z  e.  X  (
x D y )  <_  ( ( z D x ) +e ( z D y ) ) ) )
109ralrimiva 2881 . 2  |-  ( D  e.  ( *Met `  X )  ->  A. x  e.  X  ( (
x D x )  =  0  /\  A. y  e.  X  A. z  e.  X  (
x D y )  <_  ( ( z D x ) +e ( z D y ) ) ) )
11 elfvex 5899 . . 3  |-  ( D  e.  ( *Met `  X )  ->  X  e.  _V )
12 ispsmet 20674 . . 3  |-  ( X  e.  _V  ->  ( D  e.  (PsMet `  X
)  <->  ( D :
( X  X.  X
) --> RR*  /\  A. x  e.  X  ( (
x D x )  =  0  /\  A. y  e.  X  A. z  e.  X  (
x D y )  <_  ( ( z D x ) +e ( z D y ) ) ) ) ) )
1311, 12syl 16 . 2  |-  ( D  e.  ( *Met `  X )  ->  ( D  e.  (PsMet `  X
)  <->  ( D :
( X  X.  X
) --> RR*  /\  A. x  e.  X  ( (
x D x )  =  0  /\  A. y  e.  X  A. z  e.  X  (
x D y )  <_  ( ( z D x ) +e ( z D y ) ) ) ) ) )
141, 10, 13mpbir2and 920 1  |-  ( D  e.  ( *Met `  X )  ->  D  e.  (PsMet `  X )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   A.wral 2817   _Vcvv 3118   class class class wbr 4453    X. cxp 5003   -->wf 5590   ` cfv 5594  (class class class)co 6295   0cc0 9504   RR*cxr 9639    <_ cle 9641   +ecxad 11328  PsMetcpsmet 18270   *Metcxmt 18271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560  ax-resscn 9561
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-rab 2826  df-v 3120  df-sbc 3337  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-br 4454  df-opab 4512  df-mpt 4513  df-id 4801  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-fv 5602  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-map 7434  df-xr 9644  df-psmet 18279  df-xmet 18280
This theorem is referenced by:  blfval  20753  metustblOLD  20949  metutopOLD  20951  xmetutop  20953  xmsusp  20955  metucnOLD  20957  cfilucfil3  21624  cmetcusp  21660  cnflduss  21662  reust  21679  qqhucn  27805  heicant  29983
  Copyright terms: Public domain W3C validator