MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmeter Structured version   Unicode version

Theorem xmeter 21434
Description: The "finitely separated" relation is an equivalence relation. (Contributed by Mario Carneiro, 24-Aug-2015.)
Hypothesis
Ref Expression
xmeter.1  |-  .~  =  ( `' D " RR )
Assertion
Ref Expression
xmeter  |-  ( D  e.  ( *Met `  X )  ->  .~  Er  X )

Proof of Theorem xmeter
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xmeter.1 . . . . 5  |-  .~  =  ( `' D " RR )
2 cnvimass 5203 . . . . 5  |-  ( `' D " RR ) 
C_  dom  D
31, 2eqsstri 3494 . . . 4  |-  .~  C_  dom  D
4 xmetf 21330 . . . . 5  |-  ( D  e.  ( *Met `  X )  ->  D : ( X  X.  X ) --> RR* )
5 fdm 5746 . . . . 5  |-  ( D : ( X  X.  X ) --> RR*  ->  dom 
D  =  ( X  X.  X ) )
64, 5syl 17 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  dom  D  =  ( X  X.  X ) )
73, 6syl5sseq 3512 . . 3  |-  ( D  e.  ( *Met `  X )  ->  .~  C_  ( X  X.  X ) )
8 relxp 4957 . . 3  |-  Rel  ( X  X.  X )
9 relss 4937 . . 3  |-  (  .~  C_  ( X  X.  X
)  ->  ( Rel  ( X  X.  X
)  ->  Rel  .~  )
)
107, 8, 9mpisyl 22 . 2  |-  ( D  e.  ( *Met `  X )  ->  Rel  .~  )
111xmeterval 21433 . . . . 5  |-  ( D  e.  ( *Met `  X )  ->  (
x  .~  y  <->  ( x  e.  X  /\  y  e.  X  /\  (
x D y )  e.  RR ) ) )
1211biimpa 486 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  x  .~  y
)  ->  ( x  e.  X  /\  y  e.  X  /\  (
x D y )  e.  RR ) )
1312simp2d 1018 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  x  .~  y
)  ->  y  e.  X )
1412simp1d 1017 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  x  .~  y
)  ->  x  e.  X )
15 simpl 458 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  x  .~  y
)  ->  D  e.  ( *Met `  X
) )
16 xmetsym 21348 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  x  e.  X  /\  y  e.  X
)  ->  ( x D y )  =  ( y D x ) )
1715, 14, 13, 16syl3anc 1264 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  x  .~  y
)  ->  ( x D y )  =  ( y D x ) )
1812simp3d 1019 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  x  .~  y
)  ->  ( x D y )  e.  RR )
1917, 18eqeltrrd 2511 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  x  .~  y
)  ->  ( y D x )  e.  RR )
201xmeterval 21433 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  (
y  .~  x  <->  ( y  e.  X  /\  x  e.  X  /\  (
y D x )  e.  RR ) ) )
2120adantr 466 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  x  .~  y
)  ->  ( y  .~  x  <->  ( y  e.  X  /\  x  e.  X  /\  ( y D x )  e.  RR ) ) )
2213, 14, 19, 21mpbir3and 1188 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  x  .~  y
)  ->  y  .~  x )
2314adantrr 721 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  ( x  .~  y  /\  y  .~  z
) )  ->  x  e.  X )
241xmeterval 21433 . . . . . 6  |-  ( D  e.  ( *Met `  X )  ->  (
y  .~  z  <->  ( y  e.  X  /\  z  e.  X  /\  (
y D z )  e.  RR ) ) )
2524biimpa 486 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  y  .~  z
)  ->  ( y  e.  X  /\  z  e.  X  /\  (
y D z )  e.  RR ) )
2625adantrl 720 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  ( x  .~  y  /\  y  .~  z
) )  ->  (
y  e.  X  /\  z  e.  X  /\  ( y D z )  e.  RR ) )
2726simp2d 1018 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  ( x  .~  y  /\  y  .~  z
) )  ->  z  e.  X )
28 simpl 458 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  ( x  .~  y  /\  y  .~  z
) )  ->  D  e.  ( *Met `  X ) )
2918adantrr 721 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  ( x  .~  y  /\  y  .~  z
) )  ->  (
x D y )  e.  RR )
3026simp3d 1019 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  ( x  .~  y  /\  y  .~  z
) )  ->  (
y D z )  e.  RR )
31 rexadd 11525 . . . . . 6  |-  ( ( ( x D y )  e.  RR  /\  ( y D z )  e.  RR )  ->  ( ( x D y ) +e ( y D z ) )  =  ( ( x D y )  +  ( y D z ) ) )
32 readdcl 9622 . . . . . 6  |-  ( ( ( x D y )  e.  RR  /\  ( y D z )  e.  RR )  ->  ( ( x D y )  +  ( y D z ) )  e.  RR )
3331, 32eqeltrd 2510 . . . . 5  |-  ( ( ( x D y )  e.  RR  /\  ( y D z )  e.  RR )  ->  ( ( x D y ) +e ( y D z ) )  e.  RR )
3429, 30, 33syl2anc 665 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  ( x  .~  y  /\  y  .~  z
) )  ->  (
( x D y ) +e ( y D z ) )  e.  RR )
3513adantrr 721 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  ( x  .~  y  /\  y  .~  z
) )  ->  y  e.  X )
36 xmettri 21352 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  ( x  e.  X  /\  z  e.  X  /\  y  e.  X ) )  -> 
( x D z )  <_  ( (
x D y ) +e ( y D z ) ) )
3728, 23, 27, 35, 36syl13anc 1266 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  ( x  .~  y  /\  y  .~  z
) )  ->  (
x D z )  <_  ( ( x D y ) +e ( y D z ) ) )
38 xmetlecl 21347 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  ( x  e.  X  /\  z  e.  X )  /\  (
( ( x D y ) +e
( y D z ) )  e.  RR  /\  ( x D z )  <_  ( (
x D y ) +e ( y D z ) ) ) )  ->  (
x D z )  e.  RR )
3928, 23, 27, 34, 37, 38syl122anc 1273 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  ( x  .~  y  /\  y  .~  z
) )  ->  (
x D z )  e.  RR )
401xmeterval 21433 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  (
x  .~  z  <->  ( x  e.  X  /\  z  e.  X  /\  (
x D z )  e.  RR ) ) )
4140adantr 466 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  ( x  .~  y  /\  y  .~  z
) )  ->  (
x  .~  z  <->  ( x  e.  X  /\  z  e.  X  /\  (
x D z )  e.  RR ) ) )
4223, 27, 39, 41mpbir3and 1188 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  ( x  .~  y  /\  y  .~  z
) )  ->  x  .~  z )
43 xmet0 21343 . . . . . . 7  |-  ( ( D  e.  ( *Met `  X )  /\  x  e.  X
)  ->  ( x D x )  =  0 )
44 0re 9643 . . . . . . 7  |-  0  e.  RR
4543, 44syl6eqel 2518 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  x  e.  X
)  ->  ( x D x )  e.  RR )
4645ex 435 . . . . 5  |-  ( D  e.  ( *Met `  X )  ->  (
x  e.  X  -> 
( x D x )  e.  RR ) )
4746pm4.71rd 639 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  (
x  e.  X  <->  ( (
x D x )  e.  RR  /\  x  e.  X ) ) )
48 df-3an 984 . . . . 5  |-  ( ( x  e.  X  /\  x  e.  X  /\  ( x D x )  e.  RR )  <-> 
( ( x  e.  X  /\  x  e.  X )  /\  (
x D x )  e.  RR ) )
49 anidm 648 . . . . . 6  |-  ( ( x  e.  X  /\  x  e.  X )  <->  x  e.  X )
5049anbi2ci 700 . . . . 5  |-  ( ( ( x  e.  X  /\  x  e.  X
)  /\  ( x D x )  e.  RR )  <->  ( (
x D x )  e.  RR  /\  x  e.  X ) )
5148, 50bitri 252 . . . 4  |-  ( ( x  e.  X  /\  x  e.  X  /\  ( x D x )  e.  RR )  <-> 
( ( x D x )  e.  RR  /\  x  e.  X ) )
5247, 51syl6bbr 266 . . 3  |-  ( D  e.  ( *Met `  X )  ->  (
x  e.  X  <->  ( x  e.  X  /\  x  e.  X  /\  (
x D x )  e.  RR ) ) )
531xmeterval 21433 . . 3  |-  ( D  e.  ( *Met `  X )  ->  (
x  .~  x  <->  ( x  e.  X  /\  x  e.  X  /\  (
x D x )  e.  RR ) ) )
5452, 53bitr4d 259 . 2  |-  ( D  e.  ( *Met `  X )  ->  (
x  e.  X  <->  x  .~  x ) )
5510, 22, 42, 54iserd 7393 1  |-  ( D  e.  ( *Met `  X )  ->  .~  Er  X )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1868    C_ wss 3436   class class class wbr 4420    X. cxp 4847   `'ccnv 4848   dom cdm 4849   "cima 4852   Rel wrel 4854   -->wf 5593   ` cfv 5597  (class class class)co 6301    Er wer 7364   RRcr 9538   0cc0 9539    + caddc 9542   RR*cxr 9674    <_ cle 9676   +ecxad 11407   *Metcxmt 18942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-sep 4543  ax-nul 4551  ax-pow 4598  ax-pr 4656  ax-un 6593  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-nel 2621  df-ral 2780  df-rex 2781  df-reu 2782  df-rmo 2783  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-op 4003  df-uni 4217  df-iun 4298  df-br 4421  df-opab 4480  df-mpt 4481  df-id 4764  df-po 4770  df-so 4771  df-xp 4855  df-rel 4856  df-cnv 4857  df-co 4858  df-dm 4859  df-rn 4860  df-res 4861  df-ima 4862  df-iota 5561  df-fun 5599  df-fn 5600  df-f 5601  df-f1 5602  df-fo 5603  df-f1o 5604  df-fv 5605  df-riota 6263  df-ov 6304  df-oprab 6305  df-mpt2 6306  df-1st 6803  df-2nd 6804  df-er 7367  df-map 7478  df-en 7574  df-dom 7575  df-sdom 7576  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-div 10270  df-2 10668  df-rp 11303  df-xneg 11409  df-xadd 11410  df-xmul 11411  df-xmet 18950
This theorem is referenced by:  blpnfctr  21437  xmetresbl  21438
  Copyright terms: Public domain W3C validator