MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xltnegi Structured version   Visualization version   Unicode version

Theorem xltnegi 11532
Description: Forward direction of xltneg 11533. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xltnegi  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  -e
B  <  -e A )

Proof of Theorem xltnegi
StepHypRef Expression
1 elxr 11439 . . 3  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
2 elxr 11439 . . . . . 6  |-  ( B  e.  RR*  <->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
3 ltneg 10135 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  -u B  <  -u A
) )
4 rexneg 11527 . . . . . . . . . 10  |-  ( B  e.  RR  ->  -e
B  =  -u B
)
5 rexneg 11527 . . . . . . . . . 10  |-  ( A  e.  RR  ->  -e
A  =  -u A
)
64, 5breqan12rd 4412 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  (  -e B  <  -e A  <->  -u B  <  -u A ) )
73, 6bitr4d 264 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  -e B  <  -e
A ) )
87biimpd 212 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  -> 
-e B  <  -e A ) )
9 xnegeq 11523 . . . . . . . . . . 11  |-  ( B  = +oo  ->  -e
B  =  -e +oo )
10 xnegpnf 11525 . . . . . . . . . . 11  |-  -e +oo  = -oo
119, 10syl6eq 2521 . . . . . . . . . 10  |-  ( B  = +oo  ->  -e
B  = -oo )
1211adantl 473 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  = +oo )  -> 
-e B  = -oo )
13 renegcl 9957 . . . . . . . . . . . 12  |-  ( A  e.  RR  ->  -u A  e.  RR )
145, 13eqeltrd 2549 . . . . . . . . . . 11  |-  ( A  e.  RR  ->  -e
A  e.  RR )
15 mnflt 11448 . . . . . . . . . . 11  |-  (  -e A  e.  RR  -> -oo  <  -e A )
1614, 15syl 17 . . . . . . . . . 10  |-  ( A  e.  RR  -> -oo  <  -e A )
1716adantr 472 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  = +oo )  -> -oo  <  -e A )
1812, 17eqbrtrd 4416 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  = +oo )  -> 
-e B  <  -e A )
1918a1d 25 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  = +oo )  ->  ( A  <  B  -> 
-e B  <  -e A ) )
20 simpr 468 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  = -oo )  ->  B  = -oo )
2120breq2d 4407 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  = -oo )  ->  ( A  <  B  <->  A  < -oo ) )
22 rexr 9704 . . . . . . . . . . 11  |-  ( A  e.  RR  ->  A  e.  RR* )
23 nltmnf 11454 . . . . . . . . . . 11  |-  ( A  e.  RR*  ->  -.  A  < -oo )
2422, 23syl 17 . . . . . . . . . 10  |-  ( A  e.  RR  ->  -.  A  < -oo )
2524adantr 472 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  = -oo )  ->  -.  A  < -oo )
2625pm2.21d 109 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  = -oo )  ->  ( A  < -oo  -> 
-e B  <  -e A ) )
2721, 26sylbid 223 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  = -oo )  ->  ( A  <  B  -> 
-e B  <  -e A ) )
288, 19, 273jaodan 1360 . . . . . 6  |-  ( ( A  e.  RR  /\  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )  ->  ( A  <  B  ->  -e
B  <  -e A ) )
292, 28sylan2b 483 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR* )  -> 
( A  <  B  -> 
-e B  <  -e A ) )
3029expimpd 614 . . . 4  |-  ( A  e.  RR  ->  (
( B  e.  RR*  /\  A  <  B )  ->  -e B  <  -e A ) )
31 simpl 464 . . . . . . 7  |-  ( ( A  = +oo  /\  B  e.  RR* )  ->  A  = +oo )
3231breq1d 4405 . . . . . 6  |-  ( ( A  = +oo  /\  B  e.  RR* )  -> 
( A  <  B  <-> +oo 
<  B ) )
33 pnfnlt 11453 . . . . . . . 8  |-  ( B  e.  RR*  ->  -. +oo  <  B )
3433adantl 473 . . . . . . 7  |-  ( ( A  = +oo  /\  B  e.  RR* )  ->  -. +oo  <  B )
3534pm2.21d 109 . . . . . 6  |-  ( ( A  = +oo  /\  B  e.  RR* )  -> 
( +oo  <  B  ->  -e B  <  -e
A ) )
3632, 35sylbid 223 . . . . 5  |-  ( ( A  = +oo  /\  B  e.  RR* )  -> 
( A  <  B  -> 
-e B  <  -e A ) )
3736expimpd 614 . . . 4  |-  ( A  = +oo  ->  (
( B  e.  RR*  /\  A  <  B )  ->  -e B  <  -e A ) )
38 breq1 4398 . . . . . 6  |-  ( A  = -oo  ->  ( A  <  B  <-> -oo  <  B
) )
3938anbi2d 718 . . . . 5  |-  ( A  = -oo  ->  (
( B  e.  RR*  /\  A  <  B )  <-> 
( B  e.  RR*  /\ -oo  <  B ) ) )
40 renegcl 9957 . . . . . . . . . . 11  |-  ( B  e.  RR  ->  -u B  e.  RR )
414, 40eqeltrd 2549 . . . . . . . . . 10  |-  ( B  e.  RR  ->  -e
B  e.  RR )
4241adantr 472 . . . . . . . . 9  |-  ( ( B  e.  RR  /\ -oo 
<  B )  ->  -e
B  e.  RR )
43 ltpnf 11445 . . . . . . . . 9  |-  (  -e B  e.  RR  -> 
-e B  < +oo )
4442, 43syl 17 . . . . . . . 8  |-  ( ( B  e.  RR  /\ -oo 
<  B )  ->  -e
B  < +oo )
4511adantr 472 . . . . . . . . 9  |-  ( ( B  = +oo  /\ -oo 
<  B )  ->  -e
B  = -oo )
46 mnfltpnf 11451 . . . . . . . . 9  |- -oo  < +oo
4745, 46syl6eqbr 4433 . . . . . . . 8  |-  ( ( B  = +oo  /\ -oo 
<  B )  ->  -e
B  < +oo )
48 breq2 4399 . . . . . . . . . 10  |-  ( B  = -oo  ->  ( -oo  <  B  <-> -oo  < -oo ) )
49 mnfxr 11437 . . . . . . . . . . . 12  |- -oo  e.  RR*
50 nltmnf 11454 . . . . . . . . . . . 12  |-  ( -oo  e.  RR*  ->  -. -oo  < -oo )
5149, 50ax-mp 5 . . . . . . . . . . 11  |-  -. -oo  < -oo
5251pm2.21i 136 . . . . . . . . . 10  |-  ( -oo  < -oo  ->  -e B  < +oo )
5348, 52syl6bi 236 . . . . . . . . 9  |-  ( B  = -oo  ->  ( -oo  <  B  ->  -e
B  < +oo )
)
5453imp 436 . . . . . . . 8  |-  ( ( B  = -oo  /\ -oo 
<  B )  ->  -e
B  < +oo )
5544, 47, 543jaoian 1359 . . . . . . 7  |-  ( ( ( B  e.  RR  \/  B  = +oo  \/  B  = -oo )  /\ -oo  <  B
)  ->  -e B  < +oo )
562, 55sylanb 480 . . . . . 6  |-  ( ( B  e.  RR*  /\ -oo  <  B )  ->  -e
B  < +oo )
57 xnegeq 11523 . . . . . . . 8  |-  ( A  = -oo  ->  -e
A  =  -e -oo )
58 xnegmnf 11526 . . . . . . . 8  |-  -e -oo  = +oo
5957, 58syl6eq 2521 . . . . . . 7  |-  ( A  = -oo  ->  -e
A  = +oo )
6059breq2d 4407 . . . . . 6  |-  ( A  = -oo  ->  (  -e B  <  -e
A  <->  -e B  < +oo ) )
6156, 60syl5ibr 229 . . . . 5  |-  ( A  = -oo  ->  (
( B  e.  RR*  /\ -oo  <  B )  ->  -e B  <  -e
A ) )
6239, 61sylbid 223 . . . 4  |-  ( A  = -oo  ->  (
( B  e.  RR*  /\  A  <  B )  ->  -e B  <  -e A ) )
6330, 37, 623jaoi 1357 . . 3  |-  ( ( A  e.  RR  \/  A  = +oo  \/  A  = -oo )  ->  (
( B  e.  RR*  /\  A  <  B )  ->  -e B  <  -e A ) )
641, 63sylbi 200 . 2  |-  ( A  e.  RR*  ->  ( ( B  e.  RR*  /\  A  <  B )  ->  -e
B  <  -e A ) )
65643impib 1229 1  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  -e
B  <  -e A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 376    \/ w3o 1006    /\ w3a 1007    = wceq 1452    e. wcel 1904   class class class wbr 4395   RRcr 9556   +oocpnf 9690   -oocmnf 9691   RR*cxr 9692    < clt 9693   -ucneg 9881    -ecxne 11429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-op 3966  df-uni 4191  df-br 4396  df-opab 4455  df-mpt 4456  df-id 4754  df-po 4760  df-so 4761  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-er 7381  df-en 7588  df-dom 7589  df-sdom 7590  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-xneg 11432
This theorem is referenced by:  xltneg  11533  xrsdsreclblem  19091
  Copyright terms: Public domain W3C validator