Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlemnf Structured version   Unicode version

Theorem xlemnf 27227
Description: An extended real which is less than minus infinity is minus infinity. (Contributed by Thierry Arnoux, 18-Feb-2018.)
Assertion
Ref Expression
xlemnf  |-  ( A  e.  RR*  ->  ( A  <_ -oo  <->  A  = -oo ) )

Proof of Theorem xlemnf
StepHypRef Expression
1 mnfxr 11314 . . 3  |- -oo  e.  RR*
2 xrlenlt 9643 . . 3  |-  ( ( A  e.  RR*  /\ -oo  e.  RR* )  ->  ( A  <_ -oo  <->  -. -oo  <  A
) )
31, 2mpan2 671 . 2  |-  ( A  e.  RR*  ->  ( A  <_ -oo  <->  -. -oo  <  A
) )
4 ngtmnft 11359 . 2  |-  ( A  e.  RR*  ->  ( A  = -oo  <->  -. -oo  <  A ) )
53, 4bitr4d 256 1  |-  ( A  e.  RR*  ->  ( A  <_ -oo  <->  A  = -oo ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    = wceq 1374    e. wcel 1762   class class class wbr 4442   -oocmnf 9617   RR*cxr 9618    < clt 9619    <_ cle 9620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569  ax-cnex 9539  ax-resscn 9540  ax-pre-lttri 9557  ax-pre-lttrn 9558
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-nel 2660  df-ral 2814  df-rex 2815  df-rab 2818  df-v 3110  df-sbc 3327  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-op 4029  df-uni 4241  df-br 4443  df-opab 4501  df-mpt 4502  df-id 4790  df-po 4795  df-so 4796  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-er 7303  df-en 7509  df-dom 7510  df-sdom 7511  df-pnf 9621  df-mnf 9622  df-xr 9623  df-ltxr 9624  df-le 9625
This theorem is referenced by:  infxrmnf  27230
  Copyright terms: Public domain W3C validator