MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xleadd1a Structured version   Unicode version

Theorem xleadd1a 11448
Description: Extended real version of leadd1 10016; note that the converse implication is not true, unlike the real version (for example  0  <  1 but  ( 1 +e +oo )  <_  ( 0 +e +oo )). (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xleadd1a  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <_  B )  ->  ( A +e C )  <_  ( B +e C ) )

Proof of Theorem xleadd1a
StepHypRef Expression
1 simplrr 760 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  ( C  e.  RR  /\  A  e.  RR ) )  /\  B  e.  RR )  ->  A  e.  RR )
2 simpr 459 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  ( C  e.  RR  /\  A  e.  RR ) )  /\  B  e.  RR )  ->  B  e.  RR )
3 simplrl 759 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  ( C  e.  RR  /\  A  e.  RR ) )  /\  B  e.  RR )  ->  C  e.  RR )
4 simpllr 758 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  ( C  e.  RR  /\  A  e.  RR ) )  /\  B  e.  RR )  ->  A  <_  B )
51, 2, 3, 4leadd1dd 10162 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  ( C  e.  RR  /\  A  e.  RR ) )  /\  B  e.  RR )  ->  ( A  +  C
)  <_  ( B  +  C ) )
6 rexadd 11434 . . . . . . 7  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( A +e
C )  =  ( A  +  C ) )
71, 3, 6syl2anc 659 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  ( C  e.  RR  /\  A  e.  RR ) )  /\  B  e.  RR )  ->  ( A +e
C )  =  ( A  +  C ) )
8 rexadd 11434 . . . . . . 7  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( B +e
C )  =  ( B  +  C ) )
92, 3, 8syl2anc 659 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  ( C  e.  RR  /\  A  e.  RR ) )  /\  B  e.  RR )  ->  ( B +e
C )  =  ( B  +  C ) )
105, 7, 93brtr4d 4469 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  ( C  e.  RR  /\  A  e.  RR ) )  /\  B  e.  RR )  ->  ( A +e
C )  <_  ( B +e C ) )
11 simpl1 997 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <_  B )  ->  A  e.  RR* )
12 simpl3 999 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <_  B )  ->  C  e.  RR* )
13 xaddcl 11439 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  C  e.  RR* )  ->  ( A +e C )  e.  RR* )
1411, 12, 13syl2anc 659 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <_  B )  ->  ( A +e C )  e.  RR* )
1514ad2antrr 723 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  ( C  e.  RR  /\  A  e.  RR ) )  /\  B  = +oo )  ->  ( A +e
C )  e.  RR* )
16 pnfge 11342 . . . . . . 7  |-  ( ( A +e C )  e.  RR*  ->  ( A +e C )  <_ +oo )
1715, 16syl 16 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  ( C  e.  RR  /\  A  e.  RR ) )  /\  B  = +oo )  ->  ( A +e
C )  <_ +oo )
18 oveq1 6277 . . . . . . 7  |-  ( B  = +oo  ->  ( B +e C )  =  ( +oo +e C ) )
19 rexr 9628 . . . . . . . . 9  |-  ( C  e.  RR  ->  C  e.  RR* )
20 renemnf 9631 . . . . . . . . 9  |-  ( C  e.  RR  ->  C  =/= -oo )
21 xaddpnf2 11429 . . . . . . . . 9  |-  ( ( C  e.  RR*  /\  C  =/= -oo )  ->  ( +oo +e C )  = +oo )
2219, 20, 21syl2anc 659 . . . . . . . 8  |-  ( C  e.  RR  ->  ( +oo +e C )  = +oo )
2322ad2antrl 725 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  ( C  e.  RR  /\  A  e.  RR ) )  -> 
( +oo +e C )  = +oo )
2418, 23sylan9eqr 2517 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  ( C  e.  RR  /\  A  e.  RR ) )  /\  B  = +oo )  ->  ( B +e
C )  = +oo )
2517, 24breqtrrd 4465 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  ( C  e.  RR  /\  A  e.  RR ) )  /\  B  = +oo )  ->  ( A +e
C )  <_  ( B +e C ) )
2614adantr 463 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  B  = -oo )  ->  ( A +e C )  e.  RR* )
27 xrleid 11359 . . . . . . . 8  |-  ( ( A +e C )  e.  RR*  ->  ( A +e C )  <_  ( A +e C ) )
2826, 27syl 16 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  B  = -oo )  ->  ( A +e C )  <_  ( A +e C ) )
29 simplr 753 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  B  = -oo )  ->  A  <_  B )
30 simpr 459 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  B  = -oo )  ->  B  = -oo )
3111adantr 463 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  B  = -oo )  ->  A  e. 
RR* )
32 mnfle 11345 . . . . . . . . . . 11  |-  ( A  e.  RR*  -> -oo  <_  A )
3331, 32syl 16 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  B  = -oo )  -> -oo  <_  A )
3430, 33eqbrtrd 4459 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  B  = -oo )  ->  B  <_  A )
35 simpl2 998 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <_  B )  ->  B  e.  RR* )
36 xrletri3 11361 . . . . . . . . . . 11  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  =  B  <->  ( A  <_  B  /\  B  <_  A ) ) )
3711, 35, 36syl2anc 659 . . . . . . . . . 10  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <_  B )  ->  ( A  =  B  <->  ( A  <_  B  /\  B  <_  A ) ) )
3837adantr 463 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  B  = -oo )  ->  ( A  =  B  <->  ( A  <_  B  /\  B  <_  A ) ) )
3929, 34, 38mpbir2and 920 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  B  = -oo )  ->  A  =  B )
4039oveq1d 6285 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  B  = -oo )  ->  ( A +e C )  =  ( B +e C ) )
4128, 40breqtrd 4463 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  B  = -oo )  ->  ( A +e C )  <_  ( B +e C ) )
4241adantlr 712 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  ( C  e.  RR  /\  A  e.  RR ) )  /\  B  = -oo )  ->  ( A +e
C )  <_  ( B +e C ) )
43 elxr 11328 . . . . . . 7  |-  ( B  e.  RR*  <->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
4435, 43sylib 196 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <_  B )  ->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
4544adantr 463 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  ( C  e.  RR  /\  A  e.  RR ) )  -> 
( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
4610, 25, 42, 45mpjao3dan 1293 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  ( C  e.  RR  /\  A  e.  RR ) )  -> 
( A +e
C )  <_  ( B +e C ) )
4746anassrs 646 . . 3  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  e.  RR )  /\  A  e.  RR )  ->  ( A +e C )  <_  ( B +e C ) )
4814adantr 463 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  A  = +oo )  ->  ( A +e C )  e.  RR* )
4948, 27syl 16 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  A  = +oo )  ->  ( A +e C )  <_  ( A +e C ) )
50 simplr 753 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  A  = +oo )  ->  A  <_  B )
51 pnfge 11342 . . . . . . . . . 10  |-  ( B  e.  RR*  ->  B  <_ +oo )
5235, 51syl 16 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <_  B )  ->  B  <_ +oo )
5352adantr 463 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  A  = +oo )  ->  B  <_ +oo )
54 simpr 459 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  A  = +oo )  ->  A  = +oo )
5553, 54breqtrrd 4465 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  A  = +oo )  ->  B  <_  A )
5637adantr 463 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  A  = +oo )  ->  ( A  =  B  <->  ( A  <_  B  /\  B  <_  A ) ) )
5750, 55, 56mpbir2and 920 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  A  = +oo )  ->  A  =  B )
5857oveq1d 6285 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  A  = +oo )  ->  ( A +e C )  =  ( B +e C ) )
5949, 58breqtrd 4463 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  A  = +oo )  ->  ( A +e C )  <_  ( B +e C ) )
6059adantlr 712 . . 3  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  e.  RR )  /\  A  = +oo )  ->  ( A +e C )  <_  ( B +e C ) )
61 oveq1 6277 . . . . 5  |-  ( A  = -oo  ->  ( A +e C )  =  ( -oo +e C ) )
62 renepnf 9630 . . . . . . 7  |-  ( C  e.  RR  ->  C  =/= +oo )
63 xaddmnf2 11431 . . . . . . 7  |-  ( ( C  e.  RR*  /\  C  =/= +oo )  ->  ( -oo +e C )  = -oo )
6419, 62, 63syl2anc 659 . . . . . 6  |-  ( C  e.  RR  ->  ( -oo +e C )  = -oo )
6564adantl 464 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  C  e.  RR )  ->  ( -oo +e C )  = -oo )
6661, 65sylan9eqr 2517 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  e.  RR )  /\  A  = -oo )  ->  ( A +e C )  = -oo )
67 xaddcl 11439 . . . . . . 7  |-  ( ( B  e.  RR*  /\  C  e.  RR* )  ->  ( B +e C )  e.  RR* )
6835, 12, 67syl2anc 659 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <_  B )  ->  ( B +e C )  e.  RR* )
6968ad2antrr 723 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  e.  RR )  /\  A  = -oo )  ->  ( B +e C )  e.  RR* )
70 mnfle 11345 . . . . 5  |-  ( ( B +e C )  e.  RR*  -> -oo 
<_  ( B +e
C ) )
7169, 70syl 16 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  e.  RR )  /\  A  = -oo )  -> -oo  <_  ( B +e C ) )
7266, 71eqbrtrd 4459 . . 3  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  e.  RR )  /\  A  = -oo )  ->  ( A +e C )  <_  ( B +e C ) )
73 elxr 11328 . . . . 5  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
7411, 73sylib 196 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <_  B )  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
7574adantr 463 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  C  e.  RR )  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
7647, 60, 72, 75mpjao3dan 1293 . 2  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  C  e.  RR )  ->  ( A +e C )  <_  ( B +e C ) )
7741adantlr 712 . . 3  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  = +oo )  /\  B  = -oo )  ->  ( A +e C )  <_  ( B +e C ) )
7814ad2antrr 723 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  = +oo )  /\  B  =/= -oo )  ->  ( A +e C )  e.  RR* )
7978, 16syl 16 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  = +oo )  /\  B  =/= -oo )  ->  ( A +e C )  <_ +oo )
80 simplr 753 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  = +oo )  /\  B  =/= -oo )  ->  C  = +oo )
8180oveq2d 6286 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  = +oo )  /\  B  =/= -oo )  ->  ( B +e C )  =  ( B +e +oo ) )
8235adantr 463 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  C  = +oo )  ->  B  e. 
RR* )
83 xaddpnf1 11428 . . . . . 6  |-  ( ( B  e.  RR*  /\  B  =/= -oo )  ->  ( B +e +oo )  = +oo )
8482, 83sylan 469 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  = +oo )  /\  B  =/= -oo )  ->  ( B +e +oo )  = +oo )
8581, 84eqtrd 2495 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  = +oo )  /\  B  =/= -oo )  ->  ( B +e C )  = +oo )
8679, 85breqtrrd 4465 . . 3  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  = +oo )  /\  B  =/= -oo )  ->  ( A +e C )  <_  ( B +e C ) )
8777, 86pm2.61dane 2772 . 2  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  C  = +oo )  ->  ( A +e C )  <_  ( B +e C ) )
8859adantlr 712 . . 3  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  = -oo )  /\  A  = +oo )  ->  ( A +e C )  <_  ( B +e C ) )
89 simplr 753 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  = -oo )  /\  A  =/= +oo )  ->  C  = -oo )
9089oveq2d 6286 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  = -oo )  /\  A  =/= +oo )  ->  ( A +e C )  =  ( A +e -oo ) )
9111adantr 463 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  C  = -oo )  ->  A  e. 
RR* )
92 xaddmnf1 11430 . . . . . 6  |-  ( ( A  e.  RR*  /\  A  =/= +oo )  ->  ( A +e -oo )  = -oo )
9391, 92sylan 469 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  = -oo )  /\  A  =/= +oo )  ->  ( A +e -oo )  = -oo )
9490, 93eqtrd 2495 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  = -oo )  /\  A  =/= +oo )  ->  ( A +e C )  = -oo )
9568ad2antrr 723 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  = -oo )  /\  A  =/= +oo )  ->  ( B +e C )  e.  RR* )
9695, 70syl 16 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  = -oo )  /\  A  =/= +oo )  -> -oo  <_  ( B +e C ) )
9794, 96eqbrtrd 4459 . . 3  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  = -oo )  /\  A  =/= +oo )  ->  ( A +e C )  <_  ( B +e C ) )
9888, 97pm2.61dane 2772 . 2  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  C  = -oo )  ->  ( A +e C )  <_  ( B +e C ) )
99 elxr 11328 . . 3  |-  ( C  e.  RR*  <->  ( C  e.  RR  \/  C  = +oo  \/  C  = -oo ) )
10012, 99sylib 196 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <_  B )  ->  ( C  e.  RR  \/  C  = +oo  \/  C  = -oo ) )
10176, 87, 98, 100mpjao3dan 1293 1  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <_  B )  ->  ( A +e C )  <_  ( B +e C ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    \/ w3o 970    /\ w3a 971    = wceq 1398    e. wcel 1823    =/= wne 2649   class class class wbr 4439  (class class class)co 6270   RRcr 9480    + caddc 9484   +oocpnf 9614   -oocmnf 9615   RR*cxr 9616    <_ cle 9618   +ecxad 11319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-po 4789  df-so 4790  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-1st 6773  df-2nd 6774  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-xadd 11322
This theorem is referenced by:  xleadd2a  11449  xleadd1  11450  xaddge0  11453  xle2add  11454  imasdsf1olem  21042  xblss2ps  21070  xblss2  21071  stdbdxmet  21184  xrge0omnd  27935  measunl  28424  carsgclctunlem2  28527
  Copyright terms: Public domain W3C validator