MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xleadd1 Structured version   Unicode version

Theorem xleadd1 11333
Description: Weakened version of xleadd1a 11331 under which the reverse implication is true. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xleadd1  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  ->  ( A  <_  B  <->  ( A +e C )  <_  ( B +e C ) ) )

Proof of Theorem xleadd1
StepHypRef Expression
1 rexr 9544 . . 3  |-  ( C  e.  RR  ->  C  e.  RR* )
2 xleadd1a 11331 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <_  B )  ->  ( A +e C )  <_  ( B +e C ) )
32ex 434 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( A  <_  B  ->  ( A +e C )  <_  ( B +e C ) ) )
41, 3syl3an3 1254 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  ->  ( A  <_  B  ->  ( A +e C )  <_  ( B +e C ) ) )
5 simp1 988 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  ->  A  e.  RR* )
613ad2ant3 1011 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  ->  C  e.  RR* )
7 xaddcl 11322 . . . . 5  |-  ( ( A  e.  RR*  /\  C  e.  RR* )  ->  ( A +e C )  e.  RR* )
85, 6, 7syl2anc 661 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  ->  ( A +e C )  e.  RR* )
9 simp2 989 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  ->  B  e.  RR* )
10 xaddcl 11322 . . . . 5  |-  ( ( B  e.  RR*  /\  C  e.  RR* )  ->  ( B +e C )  e.  RR* )
119, 6, 10syl2anc 661 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  ->  ( B +e C )  e.  RR* )
12 xnegcl 11298 . . . . 5  |-  ( C  e.  RR*  ->  -e
C  e.  RR* )
136, 12syl 16 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  ->  -e
C  e.  RR* )
14 xleadd1a 11331 . . . . 5  |-  ( ( ( ( A +e C )  e. 
RR*  /\  ( B +e C )  e.  RR*  /\  -e
C  e.  RR* )  /\  ( A +e
C )  <_  ( B +e C ) )  ->  ( ( A +e C ) +e  -e
C )  <_  (
( B +e
C ) +e  -e C ) )
1514ex 434 . . . 4  |-  ( ( ( A +e
C )  e.  RR*  /\  ( B +e
C )  e.  RR*  /\  -e C  e. 
RR* )  ->  (
( A +e
C )  <_  ( B +e C )  ->  ( ( A +e C ) +e  -e
C )  <_  (
( B +e
C ) +e  -e C ) ) )
168, 11, 13, 15syl3anc 1219 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  ->  (
( A +e
C )  <_  ( B +e C )  ->  ( ( A +e C ) +e  -e
C )  <_  (
( B +e
C ) +e  -e C ) ) )
17 xpncan 11329 . . . . 5  |-  ( ( A  e.  RR*  /\  C  e.  RR )  ->  (
( A +e
C ) +e  -e C )  =  A )
18173adant2 1007 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  ->  (
( A +e
C ) +e  -e C )  =  A )
19 xpncan 11329 . . . . 5  |-  ( ( B  e.  RR*  /\  C  e.  RR )  ->  (
( B +e
C ) +e  -e C )  =  B )
20193adant1 1006 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  ->  (
( B +e
C ) +e  -e C )  =  B )
2118, 20breq12d 4416 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  ->  (
( ( A +e C ) +e  -e C )  <_  ( ( B +e C ) +e  -e
C )  <->  A  <_  B ) )
2216, 21sylibd 214 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  ->  (
( A +e
C )  <_  ( B +e C )  ->  A  <_  B
) )
234, 22impbid 191 1  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  ->  ( A  <_  B  <->  ( A +e C )  <_  ( B +e C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ w3a 965    = wceq 1370    e. wcel 1758   class class class wbr 4403  (class class class)co 6203   RRcr 9396   RR*cxr 9532    <_ cle 9534    -ecxne 11201   +ecxad 11202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485  ax-cnex 9453  ax-resscn 9454  ax-1cn 9455  ax-icn 9456  ax-addcl 9457  ax-addrcl 9458  ax-mulcl 9459  ax-mulrcl 9460  ax-mulcom 9461  ax-addass 9462  ax-mulass 9463  ax-distr 9464  ax-i2m1 9465  ax-1ne0 9466  ax-1rid 9467  ax-rnegex 9468  ax-rrecex 9469  ax-cnre 9470  ax-pre-lttri 9471  ax-pre-lttrn 9472  ax-pre-ltadd 9473
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-op 3995  df-uni 4203  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-id 4747  df-po 4752  df-so 4753  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-riota 6164  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-1st 6690  df-2nd 6691  df-er 7214  df-en 7424  df-dom 7425  df-sdom 7426  df-pnf 9535  df-mnf 9536  df-xr 9537  df-ltxr 9538  df-le 9539  df-sub 9712  df-neg 9713  df-xneg 11204  df-xadd 11205
This theorem is referenced by:  xltadd1  11334  xsubge0  11339  xlesubadd  11341
  Copyright terms: Public domain W3C validator