MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xle2add Structured version   Unicode version

Theorem xle2add 11447
Description: Extended real version of le2add 10030. (Contributed by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
xle2add  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )
)  ->  ( ( A  <_  C  /\  B  <_  D )  ->  ( A +e B )  <_  ( C +e D ) ) )

Proof of Theorem xle2add
StepHypRef Expression
1 simpll 753 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )
)  ->  A  e.  RR* )
2 simprl 755 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )
)  ->  C  e.  RR* )
3 simplr 754 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )
)  ->  B  e.  RR* )
4 xleadd1a 11441 . . . 4  |-  ( ( ( A  e.  RR*  /\  C  e.  RR*  /\  B  e.  RR* )  /\  A  <_  C )  ->  ( A +e B )  <_  ( C +e B ) )
54ex 434 . . 3  |-  ( ( A  e.  RR*  /\  C  e.  RR*  /\  B  e. 
RR* )  ->  ( A  <_  C  ->  ( A +e B )  <_  ( C +e B ) ) )
61, 2, 3, 5syl3anc 1228 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )
)  ->  ( A  <_  C  ->  ( A +e B )  <_  ( C +e B ) ) )
7 simprr 756 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )
)  ->  D  e.  RR* )
8 xleadd2a 11442 . . . 4  |-  ( ( ( B  e.  RR*  /\  D  e.  RR*  /\  C  e.  RR* )  /\  B  <_  D )  ->  ( C +e B )  <_  ( C +e D ) )
98ex 434 . . 3  |-  ( ( B  e.  RR*  /\  D  e.  RR*  /\  C  e. 
RR* )  ->  ( B  <_  D  ->  ( C +e B )  <_  ( C +e D ) ) )
103, 7, 2, 9syl3anc 1228 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )
)  ->  ( B  <_  D  ->  ( C +e B )  <_  ( C +e D ) ) )
11 xaddcl 11432 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A +e B )  e.  RR* )
1211adantr 465 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )
)  ->  ( A +e B )  e.  RR* )
13 xaddcl 11432 . . . 4  |-  ( ( C  e.  RR*  /\  B  e.  RR* )  ->  ( C +e B )  e.  RR* )
142, 3, 13syl2anc 661 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )
)  ->  ( C +e B )  e.  RR* )
15 xaddcl 11432 . . . 4  |-  ( ( C  e.  RR*  /\  D  e.  RR* )  ->  ( C +e D )  e.  RR* )
1615adantl 466 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )
)  ->  ( C +e D )  e.  RR* )
17 xrletr 11357 . . 3  |-  ( ( ( A +e
B )  e.  RR*  /\  ( C +e
B )  e.  RR*  /\  ( C +e
D )  e.  RR* )  ->  ( ( ( A +e B )  <_  ( C +e B )  /\  ( C +e B )  <_ 
( C +e
D ) )  -> 
( A +e
B )  <_  ( C +e D ) ) )
1812, 14, 16, 17syl3anc 1228 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )
)  ->  ( (
( A +e
B )  <_  ( C +e B )  /\  ( C +e B )  <_ 
( C +e
D ) )  -> 
( A +e
B )  <_  ( C +e D ) ) )
196, 10, 18syl2and 483 1  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )
)  ->  ( ( A  <_  C  /\  B  <_  D )  ->  ( A +e B )  <_  ( C +e D ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    e. wcel 1767   class class class wbr 4447  (class class class)co 6282   RR*cxr 9623    <_ cle 9625   +ecxad 11312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-po 4800  df-so 4801  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-1st 6781  df-2nd 6782  df-er 7308  df-en 7514  df-dom 7515  df-sdom 7516  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-xadd 11315
This theorem is referenced by:  metnrmlem3  21097  xraddge02  27242  xrofsup  27247  esumpmono  27722
  Copyright terms: Public domain W3C validator