MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xle2add Structured version   Unicode version

Theorem xle2add 11547
Description: Extended real version of le2add 10098. (Contributed by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
xle2add  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )
)  ->  ( ( A  <_  C  /\  B  <_  D )  ->  ( A +e B )  <_  ( C +e D ) ) )

Proof of Theorem xle2add
StepHypRef Expression
1 simpll 759 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )
)  ->  A  e.  RR* )
2 simprl 763 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )
)  ->  C  e.  RR* )
3 simplr 761 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )
)  ->  B  e.  RR* )
4 xleadd1a 11541 . . . 4  |-  ( ( ( A  e.  RR*  /\  C  e.  RR*  /\  B  e.  RR* )  /\  A  <_  C )  ->  ( A +e B )  <_  ( C +e B ) )
54ex 436 . . 3  |-  ( ( A  e.  RR*  /\  C  e.  RR*  /\  B  e. 
RR* )  ->  ( A  <_  C  ->  ( A +e B )  <_  ( C +e B ) ) )
61, 2, 3, 5syl3anc 1265 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )
)  ->  ( A  <_  C  ->  ( A +e B )  <_  ( C +e B ) ) )
7 simprr 765 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )
)  ->  D  e.  RR* )
8 xleadd2a 11542 . . . 4  |-  ( ( ( B  e.  RR*  /\  D  e.  RR*  /\  C  e.  RR* )  /\  B  <_  D )  ->  ( C +e B )  <_  ( C +e D ) )
98ex 436 . . 3  |-  ( ( B  e.  RR*  /\  D  e.  RR*  /\  C  e. 
RR* )  ->  ( B  <_  D  ->  ( C +e B )  <_  ( C +e D ) ) )
103, 7, 2, 9syl3anc 1265 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )
)  ->  ( B  <_  D  ->  ( C +e B )  <_  ( C +e D ) ) )
11 xaddcl 11532 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A +e B )  e.  RR* )
1211adantr 467 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )
)  ->  ( A +e B )  e.  RR* )
13 xaddcl 11532 . . . 4  |-  ( ( C  e.  RR*  /\  B  e.  RR* )  ->  ( C +e B )  e.  RR* )
142, 3, 13syl2anc 666 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )
)  ->  ( C +e B )  e.  RR* )
15 xaddcl 11532 . . . 4  |-  ( ( C  e.  RR*  /\  D  e.  RR* )  ->  ( C +e D )  e.  RR* )
1615adantl 468 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )
)  ->  ( C +e D )  e.  RR* )
17 xrletr 11457 . . 3  |-  ( ( ( A +e
B )  e.  RR*  /\  ( C +e
B )  e.  RR*  /\  ( C +e
D )  e.  RR* )  ->  ( ( ( A +e B )  <_  ( C +e B )  /\  ( C +e B )  <_ 
( C +e
D ) )  -> 
( A +e
B )  <_  ( C +e D ) ) )
1812, 14, 16, 17syl3anc 1265 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )
)  ->  ( (
( A +e
B )  <_  ( C +e B )  /\  ( C +e B )  <_ 
( C +e
D ) )  -> 
( A +e
B )  <_  ( C +e D ) ) )
196, 10, 18syl2and 486 1  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )
)  ->  ( ( A  <_  C  /\  B  <_  D )  ->  ( A +e B )  <_  ( C +e D ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 371    /\ w3a 983    e. wcel 1869   class class class wbr 4421  (class class class)co 6303   RR*cxr 9676    <_ cle 9678   +ecxad 11409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-8 1871  ax-9 1873  ax-10 1888  ax-11 1893  ax-12 1906  ax-13 2054  ax-ext 2401  ax-sep 4544  ax-nul 4553  ax-pow 4600  ax-pr 4658  ax-un 6595  ax-cnex 9597  ax-resscn 9598  ax-1cn 9599  ax-icn 9600  ax-addcl 9601  ax-addrcl 9602  ax-mulcl 9603  ax-mulrcl 9604  ax-mulcom 9605  ax-addass 9606  ax-mulass 9607  ax-distr 9608  ax-i2m1 9609  ax-1ne0 9610  ax-1rid 9611  ax-rnegex 9612  ax-rrecex 9613  ax-cnre 9614  ax-pre-lttri 9615  ax-pre-lttrn 9616  ax-pre-ltadd 9617
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 984  df-3an 985  df-tru 1441  df-ex 1661  df-nf 1665  df-sb 1788  df-eu 2270  df-mo 2271  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ne 2621  df-nel 2622  df-ral 2781  df-rex 2782  df-rab 2785  df-v 3084  df-sbc 3301  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-nul 3763  df-if 3911  df-pw 3982  df-sn 3998  df-pr 4000  df-op 4004  df-uni 4218  df-iun 4299  df-br 4422  df-opab 4481  df-mpt 4482  df-id 4766  df-po 4772  df-so 4773  df-xp 4857  df-rel 4858  df-cnv 4859  df-co 4860  df-dm 4861  df-rn 4862  df-res 4863  df-ima 4864  df-iota 5563  df-fun 5601  df-fn 5602  df-f 5603  df-f1 5604  df-fo 5605  df-f1o 5606  df-fv 5607  df-ov 6306  df-oprab 6307  df-mpt2 6308  df-1st 6805  df-2nd 6806  df-er 7369  df-en 7576  df-dom 7577  df-sdom 7578  df-pnf 9679  df-mnf 9680  df-xr 9681  df-ltxr 9682  df-le 9683  df-xadd 11412
This theorem is referenced by:  metnrmlem3  21870  metnrmlem3OLD  21885  xraddge02  28336  xrofsup  28353  esumpmono  28902  xadd0ge  37428  sge0split  38083
  Copyright terms: Public domain W3C validator