MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xle2add Structured version   Unicode version

Theorem xle2add 11504
Description: Extended real version of le2add 10075. (Contributed by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
xle2add  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )
)  ->  ( ( A  <_  C  /\  B  <_  D )  ->  ( A +e B )  <_  ( C +e D ) ) )

Proof of Theorem xle2add
StepHypRef Expression
1 simpll 752 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )
)  ->  A  e.  RR* )
2 simprl 756 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )
)  ->  C  e.  RR* )
3 simplr 754 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )
)  ->  B  e.  RR* )
4 xleadd1a 11498 . . . 4  |-  ( ( ( A  e.  RR*  /\  C  e.  RR*  /\  B  e.  RR* )  /\  A  <_  C )  ->  ( A +e B )  <_  ( C +e B ) )
54ex 432 . . 3  |-  ( ( A  e.  RR*  /\  C  e.  RR*  /\  B  e. 
RR* )  ->  ( A  <_  C  ->  ( A +e B )  <_  ( C +e B ) ) )
61, 2, 3, 5syl3anc 1230 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )
)  ->  ( A  <_  C  ->  ( A +e B )  <_  ( C +e B ) ) )
7 simprr 758 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )
)  ->  D  e.  RR* )
8 xleadd2a 11499 . . . 4  |-  ( ( ( B  e.  RR*  /\  D  e.  RR*  /\  C  e.  RR* )  /\  B  <_  D )  ->  ( C +e B )  <_  ( C +e D ) )
98ex 432 . . 3  |-  ( ( B  e.  RR*  /\  D  e.  RR*  /\  C  e. 
RR* )  ->  ( B  <_  D  ->  ( C +e B )  <_  ( C +e D ) ) )
103, 7, 2, 9syl3anc 1230 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )
)  ->  ( B  <_  D  ->  ( C +e B )  <_  ( C +e D ) ) )
11 xaddcl 11489 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A +e B )  e.  RR* )
1211adantr 463 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )
)  ->  ( A +e B )  e.  RR* )
13 xaddcl 11489 . . . 4  |-  ( ( C  e.  RR*  /\  B  e.  RR* )  ->  ( C +e B )  e.  RR* )
142, 3, 13syl2anc 659 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )
)  ->  ( C +e B )  e.  RR* )
15 xaddcl 11489 . . . 4  |-  ( ( C  e.  RR*  /\  D  e.  RR* )  ->  ( C +e D )  e.  RR* )
1615adantl 464 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )
)  ->  ( C +e D )  e.  RR* )
17 xrletr 11414 . . 3  |-  ( ( ( A +e
B )  e.  RR*  /\  ( C +e
B )  e.  RR*  /\  ( C +e
D )  e.  RR* )  ->  ( ( ( A +e B )  <_  ( C +e B )  /\  ( C +e B )  <_ 
( C +e
D ) )  -> 
( A +e
B )  <_  ( C +e D ) ) )
1812, 14, 16, 17syl3anc 1230 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )
)  ->  ( (
( A +e
B )  <_  ( C +e B )  /\  ( C +e B )  <_ 
( C +e
D ) )  -> 
( A +e
B )  <_  ( C +e D ) ) )
196, 10, 18syl2and 481 1  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )
)  ->  ( ( A  <_  C  /\  B  <_  D )  ->  ( A +e B )  <_  ( C +e D ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 974    e. wcel 1842   class class class wbr 4395  (class class class)co 6278   RR*cxr 9657    <_ cle 9659   +ecxad 11369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-cnex 9578  ax-resscn 9579  ax-1cn 9580  ax-icn 9581  ax-addcl 9582  ax-addrcl 9583  ax-mulcl 9584  ax-mulrcl 9585  ax-mulcom 9586  ax-addass 9587  ax-mulass 9588  ax-distr 9589  ax-i2m1 9590  ax-1ne0 9591  ax-1rid 9592  ax-rnegex 9593  ax-rrecex 9594  ax-cnre 9595  ax-pre-lttri 9596  ax-pre-lttrn 9597  ax-pre-ltadd 9598
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2759  df-rex 2760  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-op 3979  df-uni 4192  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-id 4738  df-po 4744  df-so 4745  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-1st 6784  df-2nd 6785  df-er 7348  df-en 7555  df-dom 7556  df-sdom 7557  df-pnf 9660  df-mnf 9661  df-xr 9662  df-ltxr 9663  df-le 9664  df-xadd 11372
This theorem is referenced by:  metnrmlem3  21657  xraddge02  28018  xrofsup  28030  esumpmono  28526
  Copyright terms: Public domain W3C validator