MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xkouni Structured version   Unicode version

Theorem xkouni 19013
Description: The base set of the compact-open topology. (Contributed by Mario Carneiro, 19-Mar-2015.)
Hypothesis
Ref Expression
xkouni.1  |-  J  =  ( S  ^ko  R )
Assertion
Ref Expression
xkouni  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( R  Cn  S
)  =  U. J
)

Proof of Theorem xkouni
Dummy variables  f 
k  v  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ima0 5172 . . . . . . . . 9  |-  ( f
" (/) )  =  (/)
2 0ss 3654 . . . . . . . . 9  |-  (/)  C_  U. S
31, 2eqsstri 3374 . . . . . . . 8  |-  ( f
" (/) )  C_  U. S
43a1i 11 . . . . . . 7  |-  ( ( ( R  e.  Top  /\  S  e.  Top )  /\  f  e.  ( R  Cn  S ) )  ->  ( f " (/) )  C_  U. S )
54ralrimiva 2789 . . . . . 6  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  A. f  e.  ( R  Cn  S ) ( f " (/) )  C_  U. S )
6 rabid2 2888 . . . . . 6  |-  ( ( R  Cn  S )  =  { f  e.  ( R  Cn  S
)  |  ( f
" (/) )  C_  U. S } 
<-> 
A. f  e.  ( R  Cn  S ) ( f " (/) )  C_  U. S )
75, 6sylibr 212 . . . . 5  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( R  Cn  S
)  =  { f  e.  ( R  Cn  S )  |  ( f " (/) )  C_  U. S } )
8 eqid 2433 . . . . . 6  |-  U. R  =  U. R
9 simpl 454 . . . . . 6  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  R  e.  Top )
10 simpr 458 . . . . . 6  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  S  e.  Top )
11 0ss 3654 . . . . . . 7  |-  (/)  C_  U. R
1211a1i 11 . . . . . 6  |-  ( ( R  e.  Top  /\  S  e.  Top )  -> 
(/)  C_  U. R )
13 rest0 18614 . . . . . . . 8  |-  ( R  e.  Top  ->  ( Rt  (/) )  =  { (/) } )
1413adantr 462 . . . . . . 7  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( Rt  (/) )  =  { (/)
} )
15 0cmp 18838 . . . . . . 7  |-  { (/) }  e.  Comp
1614, 15syl6eqel 2521 . . . . . 6  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( Rt  (/) )  e.  Comp )
17 eqid 2433 . . . . . . . 8  |-  U. S  =  U. S
1817topopn 18360 . . . . . . 7  |-  ( S  e.  Top  ->  U. S  e.  S )
1918adantl 463 . . . . . 6  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  U. S  e.  S
)
208, 9, 10, 12, 16, 19xkoopn 19003 . . . . 5  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  { f  e.  ( R  Cn  S )  |  ( f " (/) )  C_  U. S }  e.  ( S  ^ko  R ) )
217, 20eqeltrd 2507 . . . 4  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( R  Cn  S
)  e.  ( S  ^ko  R ) )
22 xkouni.1 . . . 4  |-  J  =  ( S  ^ko  R )
2321, 22syl6eleqr 2524 . . 3  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( R  Cn  S
)  e.  J )
24 elssuni 4109 . . 3  |-  ( ( R  Cn  S )  e.  J  ->  ( R  Cn  S )  C_  U. J )
2523, 24syl 16 . 2  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( R  Cn  S
)  C_  U. J )
26 eqid 2433 . . . . . 6  |-  { x  e.  ~P U. R  | 
( Rt  x )  e.  Comp }  =  { x  e. 
~P U. R  |  ( Rt  x )  e.  Comp }
27 eqid 2433 . . . . . 6  |-  ( k  e.  { x  e. 
~P U. R  |  ( Rt  x )  e.  Comp } ,  v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f "
k )  C_  v } )  =  ( k  e.  { x  e.  ~P U. R  | 
( Rt  x )  e.  Comp } ,  v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f "
k )  C_  v } )
288, 26, 27xkoval 19001 . . . . 5  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( S  ^ko  R )  =  (
topGen `  ( fi `  ran  ( k  e.  {
x  e.  ~P U. R  |  ( Rt  x
)  e.  Comp } , 
v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f " k
)  C_  v }
) ) ) )
2928unieqd 4089 . . . 4  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  U. ( S  ^ko  R )  =  U. ( topGen `  ( fi `  ran  ( k  e.  {
x  e.  ~P U. R  |  ( Rt  x
)  e.  Comp } , 
v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f " k
)  C_  v }
) ) ) )
3022unieqi 4088 . . . 4  |-  U. J  =  U. ( S  ^ko  R )
31 ovex 6105 . . . . . . . 8  |-  ( R  Cn  S )  e. 
_V
3231pwex 4463 . . . . . . 7  |-  ~P ( R  Cn  S )  e. 
_V
338, 26, 27xkotf 18999 . . . . . . . 8  |-  ( k  e.  { x  e. 
~P U. R  |  ( Rt  x )  e.  Comp } ,  v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f "
k )  C_  v } ) : ( { x  e.  ~P U. R  |  ( Rt  x )  e.  Comp }  X.  S ) --> ~P ( R  Cn  S )
34 frn 5553 . . . . . . . 8  |-  ( ( k  e.  { x  e.  ~P U. R  | 
( Rt  x )  e.  Comp } ,  v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f "
k )  C_  v } ) : ( { x  e.  ~P U. R  |  ( Rt  x )  e.  Comp }  X.  S ) --> ~P ( R  Cn  S )  ->  ran  ( k  e.  {
x  e.  ~P U. R  |  ( Rt  x
)  e.  Comp } , 
v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f " k
)  C_  v }
)  C_  ~P ( R  Cn  S ) )
3533, 34ax-mp 5 . . . . . . 7  |-  ran  (
k  e.  { x  e.  ~P U. R  | 
( Rt  x )  e.  Comp } ,  v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f "
k )  C_  v } )  C_  ~P ( R  Cn  S
)
3632, 35ssexi 4425 . . . . . 6  |-  ran  (
k  e.  { x  e.  ~P U. R  | 
( Rt  x )  e.  Comp } ,  v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f "
k )  C_  v } )  e.  _V
37 fiuni 7666 . . . . . 6  |-  ( ran  ( k  e.  {
x  e.  ~P U. R  |  ( Rt  x
)  e.  Comp } , 
v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f " k
)  C_  v }
)  e.  _V  ->  U.
ran  ( k  e. 
{ x  e.  ~P U. R  |  ( Rt  x )  e.  Comp } , 
v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f " k
)  C_  v }
)  =  U. ( fi `  ran  ( k  e.  { x  e. 
~P U. R  |  ( Rt  x )  e.  Comp } ,  v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f "
k )  C_  v } ) ) )
3836, 37ax-mp 5 . . . . 5  |-  U. ran  ( k  e.  {
x  e.  ~P U. R  |  ( Rt  x
)  e.  Comp } , 
v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f " k
)  C_  v }
)  =  U. ( fi `  ran  ( k  e.  { x  e. 
~P U. R  |  ( Rt  x )  e.  Comp } ,  v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f "
k )  C_  v } ) )
39 fvex 5689 . . . . . 6  |-  ( fi
`  ran  ( k  e.  { x  e.  ~P U. R  |  ( Rt  x )  e.  Comp } , 
v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f " k
)  C_  v }
) )  e.  _V
40 unitg 18413 . . . . . 6  |-  ( ( fi `  ran  (
k  e.  { x  e.  ~P U. R  | 
( Rt  x )  e.  Comp } ,  v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f "
k )  C_  v } ) )  e. 
_V  ->  U. ( topGen `  ( fi `  ran  ( k  e.  { x  e. 
~P U. R  |  ( Rt  x )  e.  Comp } ,  v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f "
k )  C_  v } ) ) )  =  U. ( fi
`  ran  ( k  e.  { x  e.  ~P U. R  |  ( Rt  x )  e.  Comp } , 
v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f " k
)  C_  v }
) ) )
4139, 40ax-mp 5 . . . . 5  |-  U. ( topGen `
 ( fi `  ran  ( k  e.  {
x  e.  ~P U. R  |  ( Rt  x
)  e.  Comp } , 
v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f " k
)  C_  v }
) ) )  = 
U. ( fi `  ran  ( k  e.  {
x  e.  ~P U. R  |  ( Rt  x
)  e.  Comp } , 
v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f " k
)  C_  v }
) )
4238, 41eqtr4i 2456 . . . 4  |-  U. ran  ( k  e.  {
x  e.  ~P U. R  |  ( Rt  x
)  e.  Comp } , 
v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f " k
)  C_  v }
)  =  U. ( topGen `
 ( fi `  ran  ( k  e.  {
x  e.  ~P U. R  |  ( Rt  x
)  e.  Comp } , 
v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f " k
)  C_  v }
) ) )
4329, 30, 423eqtr4g 2490 . . 3  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  U. J  =  U. ran  ( k  e.  {
x  e.  ~P U. R  |  ( Rt  x
)  e.  Comp } , 
v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f " k
)  C_  v }
) )
4435a1i 11 . . . 4  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ran  ( k  e. 
{ x  e.  ~P U. R  |  ( Rt  x )  e.  Comp } , 
v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f " k
)  C_  v }
)  C_  ~P ( R  Cn  S ) )
45 sspwuni 4244 . . . 4  |-  ( ran  ( k  e.  {
x  e.  ~P U. R  |  ( Rt  x
)  e.  Comp } , 
v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f " k
)  C_  v }
)  C_  ~P ( R  Cn  S )  <->  U. ran  (
k  e.  { x  e.  ~P U. R  | 
( Rt  x )  e.  Comp } ,  v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f "
k )  C_  v } )  C_  ( R  Cn  S ) )
4644, 45sylib 196 . . 3  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  U. ran  ( k  e.  { x  e. 
~P U. R  |  ( Rt  x )  e.  Comp } ,  v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f "
k )  C_  v } )  C_  ( R  Cn  S ) )
4743, 46eqsstrd 3378 . 2  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  U. J  C_  ( R  Cn  S ) )
4825, 47eqssd 3361 1  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( R  Cn  S
)  =  U. J
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1362    e. wcel 1755   A.wral 2705   {crab 2709   _Vcvv 2962    C_ wss 3316   (/)c0 3625   ~Pcpw 3848   {csn 3865   U.cuni 4079    X. cxp 4825   ran crn 4828   "cima 4830   -->wf 5402   ` cfv 5406  (class class class)co 6080    e. cmpt2 6082   ficfi 7648   ↾t crest 14341   topGenctg 14358   Topctop 18339    Cn ccn 18669   Compccmp 18830    ^ko cxko 18975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-int 4117  df-iun 4161  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-om 6466  df-1st 6566  df-2nd 6567  df-recs 6818  df-rdg 6852  df-1o 6908  df-oadd 6912  df-er 7089  df-en 7299  df-fin 7302  df-fi 7649  df-rest 14343  df-topgen 14364  df-top 18344  df-bases 18346  df-topon 18347  df-cmp 18831  df-xko 18977
This theorem is referenced by:  xkotopon  19014  xkohaus  19067  xkoptsub  19068
  Copyright terms: Public domain W3C validator