MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xkopt Structured version   Unicode version

Theorem xkopt 19187
Description: The compact-open topology on a discrete set coincides with the product topology where all the factors are the same. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
xkopt  |-  ( ( R  e.  Top  /\  A  e.  V )  ->  ( R  ^ko  ~P A )  =  ( Xt_ `  ( A  X.  { R }
) ) )

Proof of Theorem xkopt
Dummy variables  f 
k  v  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 distop 18559 . . . . 5  |-  ( A  e.  V  ->  ~P A  e.  Top )
21adantl 463 . . . 4  |-  ( ( R  e.  Top  /\  A  e.  V )  ->  ~P A  e.  Top )
3 simpl 454 . . . 4  |-  ( ( R  e.  Top  /\  A  e.  V )  ->  R  e.  Top )
4 unipw 4539 . . . . . 6  |-  U. ~P A  =  A
54eqcomi 2445 . . . . 5  |-  A  = 
U. ~P A
6 eqid 2441 . . . . 5  |-  { x  e.  ~P A  |  ( ~P At  x )  e.  Comp }  =  { x  e. 
~P A  |  ( ~P At  x )  e.  Comp }
7 eqid 2441 . . . . 5  |-  ( k  e.  { x  e. 
~P A  |  ( ~P At  x )  e.  Comp } ,  v  e.  R  |->  { f  e.  ( ~P A  Cn  R
)  |  ( f
" k )  C_  v } )  =  ( k  e.  { x  e.  ~P A  |  ( ~P At  x )  e.  Comp } ,  v  e.  R  |->  { f  e.  ( ~P A  Cn  R
)  |  ( f
" k )  C_  v } )
85, 6, 7xkoval 19119 . . . 4  |-  ( ( ~P A  e.  Top  /\  R  e.  Top )  ->  ( R  ^ko  ~P A )  =  ( topGen `  ( fi ` 
ran  ( k  e. 
{ x  e.  ~P A  |  ( ~P At  x )  e.  Comp } ,  v  e.  R  |->  { f  e.  ( ~P A  Cn  R
)  |  ( f
" k )  C_  v } ) ) ) )
92, 3, 8syl2anc 656 . . 3  |-  ( ( R  e.  Top  /\  A  e.  V )  ->  ( R  ^ko  ~P A )  =  ( topGen `  ( fi ` 
ran  ( k  e. 
{ x  e.  ~P A  |  ( ~P At  x )  e.  Comp } ,  v  e.  R  |->  { f  e.  ( ~P A  Cn  R
)  |  ( f
" k )  C_  v } ) ) ) )
10 simpr 458 . . . . 5  |-  ( ( R  e.  Top  /\  A  e.  V )  ->  A  e.  V )
11 fconst6g 5596 . . . . . 6  |-  ( R  e.  Top  ->  ( A  X.  { R }
) : A --> Top )
1211adantr 462 . . . . 5  |-  ( ( R  e.  Top  /\  A  e.  V )  ->  ( A  X.  { R } ) : A --> Top )
13 pttop 19114 . . . . 5  |-  ( ( A  e.  V  /\  ( A  X.  { R } ) : A --> Top )  ->  ( Xt_ `  ( A  X.  { R } ) )  e. 
Top )
1410, 12, 13syl2anc 656 . . . 4  |-  ( ( R  e.  Top  /\  A  e.  V )  ->  ( Xt_ `  ( A  X.  { R }
) )  e.  Top )
15 elpwi 3866 . . . . . . . . . . . . . 14  |-  ( x  e.  ~P A  ->  x  C_  A )
16 restdis 18741 . . . . . . . . . . . . . 14  |-  ( ( A  e.  V  /\  x  C_  A )  -> 
( ~P At  x )  =  ~P x )
1715, 16sylan2 471 . . . . . . . . . . . . 13  |-  ( ( A  e.  V  /\  x  e.  ~P A
)  ->  ( ~P At  x )  =  ~P x )
1817adantll 708 . . . . . . . . . . . 12  |-  ( ( ( R  e.  Top  /\  A  e.  V )  /\  x  e.  ~P A )  ->  ( ~P At  x )  =  ~P x )
1918eleq1d 2507 . . . . . . . . . . 11  |-  ( ( ( R  e.  Top  /\  A  e.  V )  /\  x  e.  ~P A )  ->  (
( ~P At  x )  e.  Comp  <->  ~P x  e.  Comp ) )
20 discmp 18960 . . . . . . . . . . 11  |-  ( x  e.  Fin  <->  ~P x  e.  Comp )
2119, 20syl6bbr 263 . . . . . . . . . 10  |-  ( ( ( R  e.  Top  /\  A  e.  V )  /\  x  e.  ~P A )  ->  (
( ~P At  x )  e.  Comp  <->  x  e.  Fin ) )
2221rabbidva 2961 . . . . . . . . 9  |-  ( ( R  e.  Top  /\  A  e.  V )  ->  { x  e.  ~P A  |  ( ~P At  x )  e.  Comp }  =  { x  e. 
~P A  |  x  e.  Fin } )
23 dfin5 3333 . . . . . . . . 9  |-  ( ~P A  i^i  Fin )  =  { x  e.  ~P A  |  x  e.  Fin }
2422, 23syl6eqr 2491 . . . . . . . 8  |-  ( ( R  e.  Top  /\  A  e.  V )  ->  { x  e.  ~P A  |  ( ~P At  x )  e.  Comp }  =  ( ~P A  i^i  Fin ) )
25 eqidd 2442 . . . . . . . 8  |-  ( ( R  e.  Top  /\  A  e.  V )  ->  R  =  R )
26 eqid 2441 . . . . . . . . . . 11  |-  U. R  =  U. R
2726toptopon 18497 . . . . . . . . . 10  |-  ( R  e.  Top  <->  R  e.  (TopOn `  U. R ) )
28 cndis 18854 . . . . . . . . . . 11  |-  ( ( A  e.  V  /\  R  e.  (TopOn `  U. R ) )  -> 
( ~P A  Cn  R )  =  ( U. R  ^m  A
) )
2928ancoms 450 . . . . . . . . . 10  |-  ( ( R  e.  (TopOn `  U. R )  /\  A  e.  V )  ->  ( ~P A  Cn  R
)  =  ( U. R  ^m  A ) )
3027, 29sylanb 469 . . . . . . . . 9  |-  ( ( R  e.  Top  /\  A  e.  V )  ->  ( ~P A  Cn  R )  =  ( U. R  ^m  A
) )
31 rabeq 2964 . . . . . . . . 9  |-  ( ( ~P A  Cn  R
)  =  ( U. R  ^m  A )  ->  { f  e.  ( ~P A  Cn  R
)  |  ( f
" k )  C_  v }  =  {
f  e.  ( U. R  ^m  A )  |  ( f " k
)  C_  v }
)
3230, 31syl 16 . . . . . . . 8  |-  ( ( R  e.  Top  /\  A  e.  V )  ->  { f  e.  ( ~P A  Cn  R
)  |  ( f
" k )  C_  v }  =  {
f  e.  ( U. R  ^m  A )  |  ( f " k
)  C_  v }
)
3324, 25, 32mpt2eq123dv 6147 . . . . . . 7  |-  ( ( R  e.  Top  /\  A  e.  V )  ->  ( k  e.  {
x  e.  ~P A  |  ( ~P At  x
)  e.  Comp } , 
v  e.  R  |->  { f  e.  ( ~P A  Cn  R )  |  ( f "
k )  C_  v } )  =  ( k  e.  ( ~P A  i^i  Fin ) ,  v  e.  R  |->  { f  e.  ( U. R  ^m  A
)  |  ( f
" k )  C_  v } ) )
3433rneqd 5063 . . . . . 6  |-  ( ( R  e.  Top  /\  A  e.  V )  ->  ran  ( k  e. 
{ x  e.  ~P A  |  ( ~P At  x )  e.  Comp } ,  v  e.  R  |->  { f  e.  ( ~P A  Cn  R
)  |  ( f
" k )  C_  v } )  =  ran  ( k  e.  ( ~P A  i^i  Fin ) ,  v  e.  R  |->  { f  e.  ( U. R  ^m  A )  |  ( f " k ) 
C_  v } ) )
35 eqid 2441 . . . . . . 7  |-  ( k  e.  ( ~P A  i^i  Fin ) ,  v  e.  R  |->  { f  e.  ( U. R  ^m  A )  |  ( f " k ) 
C_  v } )  =  ( k  e.  ( ~P A  i^i  Fin ) ,  v  e.  R  |->  { f  e.  ( U. R  ^m  A )  |  ( f " k ) 
C_  v } )
3635rnmpt2 6199 . . . . . 6  |-  ran  (
k  e.  ( ~P A  i^i  Fin ) ,  v  e.  R  |->  { f  e.  ( U. R  ^m  A
)  |  ( f
" k )  C_  v } )  =  {
x  |  E. k  e.  ( ~P A  i^i  Fin ) E. v  e.  R  x  =  {
f  e.  ( U. R  ^m  A )  |  ( f " k
)  C_  v } }
3734, 36syl6eq 2489 . . . . 5  |-  ( ( R  e.  Top  /\  A  e.  V )  ->  ran  ( k  e. 
{ x  e.  ~P A  |  ( ~P At  x )  e.  Comp } ,  v  e.  R  |->  { f  e.  ( ~P A  Cn  R
)  |  ( f
" k )  C_  v } )  =  {
x  |  E. k  e.  ( ~P A  i^i  Fin ) E. v  e.  R  x  =  {
f  e.  ( U. R  ^m  A )  |  ( f " k
)  C_  v } } )
38 elmapi 7230 . . . . . . . . . . . 12  |-  ( f  e.  ( U. R  ^m  A )  ->  f : A --> U. R )
39 eleq2 2502 . . . . . . . . . . . . . . . . 17  |-  ( v  =  if ( x  e.  k ,  v ,  U. R )  ->  ( ( f `
 x )  e.  v  <->  ( f `  x )  e.  if ( x  e.  k ,  v ,  U. R ) ) )
4039imbi2d 316 . . . . . . . . . . . . . . . 16  |-  ( v  =  if ( x  e.  k ,  v ,  U. R )  ->  ( ( x  e.  A  ->  (
f `  x )  e.  v )  <->  ( x  e.  A  ->  ( f `
 x )  e.  if ( x  e.  k ,  v , 
U. R ) ) ) )
4140bibi1d 319 . . . . . . . . . . . . . . 15  |-  ( v  =  if ( x  e.  k ,  v ,  U. R )  ->  ( ( ( x  e.  A  -> 
( f `  x
)  e.  v )  <-> 
( x  e.  k  ->  ( f `  x )  e.  v ) )  <->  ( (
x  e.  A  -> 
( f `  x
)  e.  if ( x  e.  k ,  v ,  U. R
) )  <->  ( x  e.  k  ->  ( f `
 x )  e.  v ) ) ) )
42 eleq2 2502 . . . . . . . . . . . . . . . . 17  |-  ( U. R  =  if (
x  e.  k ,  v ,  U. R
)  ->  ( (
f `  x )  e.  U. R  <->  ( f `  x )  e.  if ( x  e.  k ,  v ,  U. R ) ) )
4342imbi2d 316 . . . . . . . . . . . . . . . 16  |-  ( U. R  =  if (
x  e.  k ,  v ,  U. R
)  ->  ( (
x  e.  A  -> 
( f `  x
)  e.  U. R
)  <->  ( x  e.  A  ->  ( f `  x )  e.  if ( x  e.  k ,  v ,  U. R ) ) ) )
4443bibi1d 319 . . . . . . . . . . . . . . 15  |-  ( U. R  =  if (
x  e.  k ,  v ,  U. R
)  ->  ( (
( x  e.  A  ->  ( f `  x
)  e.  U. R
)  <->  ( x  e.  k  ->  ( f `  x )  e.  v ) )  <->  ( (
x  e.  A  -> 
( f `  x
)  e.  if ( x  e.  k ,  v ,  U. R
) )  <->  ( x  e.  k  ->  ( f `
 x )  e.  v ) ) ) )
45 inss1 3567 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ~P A  i^i  Fin )  C_ 
~P A
46 simprl 750 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( R  e.  Top  /\  A  e.  V )  /\  ( k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R ) )  -> 
k  e.  ( ~P A  i^i  Fin )
)
4745, 46sseldi 3351 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( R  e.  Top  /\  A  e.  V )  /\  ( k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R ) )  -> 
k  e.  ~P A
)
4847elpwid 3867 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( R  e.  Top  /\  A  e.  V )  /\  ( k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R ) )  -> 
k  C_  A )
4948adantr 462 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( R  e. 
Top  /\  A  e.  V )  /\  (
k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R
) )  /\  f : A --> U. R )  -> 
k  C_  A )
5049sselda 3353 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( R  e.  Top  /\  A  e.  V )  /\  (
k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R
) )  /\  f : A --> U. R )  /\  x  e.  k )  ->  x  e.  A )
51 simpr 458 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( R  e.  Top  /\  A  e.  V )  /\  (
k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R
) )  /\  f : A --> U. R )  /\  x  e.  k )  ->  x  e.  k )
5250, 512thd 240 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( R  e.  Top  /\  A  e.  V )  /\  (
k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R
) )  /\  f : A --> U. R )  /\  x  e.  k )  ->  ( x  e.  A  <->  x  e.  k ) )
5352imbi1d 317 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( R  e.  Top  /\  A  e.  V )  /\  (
k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R
) )  /\  f : A --> U. R )  /\  x  e.  k )  ->  ( ( x  e.  A  ->  ( f `  x )  e.  v )  <->  ( x  e.  k  ->  ( f `  x )  e.  v ) ) )
54 ffvelrn 5838 . . . . . . . . . . . . . . . . . . 19  |-  ( ( f : A --> U. R  /\  x  e.  A
)  ->  ( f `  x )  e.  U. R )
5554ex 434 . . . . . . . . . . . . . . . . . 18  |-  ( f : A --> U. R  ->  ( x  e.  A  ->  ( f `  x
)  e.  U. R
) )
5655adantl 463 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( R  e. 
Top  /\  A  e.  V )  /\  (
k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R
) )  /\  f : A --> U. R )  -> 
( x  e.  A  ->  ( f `  x
)  e.  U. R
) )
5756adantr 462 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( R  e.  Top  /\  A  e.  V )  /\  (
k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R
) )  /\  f : A --> U. R )  /\  -.  x  e.  k
)  ->  ( x  e.  A  ->  ( f `
 x )  e. 
U. R ) )
58 pm2.21 108 . . . . . . . . . . . . . . . . 17  |-  ( -.  x  e.  k  -> 
( x  e.  k  ->  ( f `  x )  e.  v ) )
5958adantl 463 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( R  e.  Top  /\  A  e.  V )  /\  (
k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R
) )  /\  f : A --> U. R )  /\  -.  x  e.  k
)  ->  ( x  e.  k  ->  ( f `
 x )  e.  v ) )
6057, 592thd 240 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( R  e.  Top  /\  A  e.  V )  /\  (
k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R
) )  /\  f : A --> U. R )  /\  -.  x  e.  k
)  ->  ( (
x  e.  A  -> 
( f `  x
)  e.  U. R
)  <->  ( x  e.  k  ->  ( f `  x )  e.  v ) ) )
6141, 44, 53, 60ifbothda 3821 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e. 
Top  /\  A  e.  V )  /\  (
k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R
) )  /\  f : A --> U. R )  -> 
( ( x  e.  A  ->  ( f `  x )  e.  if ( x  e.  k ,  v ,  U. R ) )  <->  ( x  e.  k  ->  ( f `
 x )  e.  v ) ) )
6261ralbidv2 2735 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e. 
Top  /\  A  e.  V )  /\  (
k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R
) )  /\  f : A --> U. R )  -> 
( A. x  e.  A  ( f `  x )  e.  if ( x  e.  k ,  v ,  U. R )  <->  A. x  e.  k  ( f `  x )  e.  v ) )
63 ffn 5556 . . . . . . . . . . . . . . 15  |-  ( f : A --> U. R  ->  f  Fn  A )
6463adantl 463 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e. 
Top  /\  A  e.  V )  /\  (
k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R
) )  /\  f : A --> U. R )  -> 
f  Fn  A )
65 vex 2973 . . . . . . . . . . . . . . . 16  |-  f  e. 
_V
6665elixp 7266 . . . . . . . . . . . . . . 15  |-  ( f  e.  X_ x  e.  A  if ( x  e.  k ,  v ,  U. R )  <->  ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  if ( x  e.  k ,  v ,  U. R ) ) )
6766baib 891 . . . . . . . . . . . . . 14  |-  ( f  Fn  A  ->  (
f  e.  X_ x  e.  A  if (
x  e.  k ,  v ,  U. R
)  <->  A. x  e.  A  ( f `  x
)  e.  if ( x  e.  k ,  v ,  U. R
) ) )
6864, 67syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e. 
Top  /\  A  e.  V )  /\  (
k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R
) )  /\  f : A --> U. R )  -> 
( f  e.  X_ x  e.  A  if ( x  e.  k ,  v ,  U. R )  <->  A. x  e.  A  ( f `  x )  e.  if ( x  e.  k ,  v ,  U. R ) ) )
69 ffun 5558 . . . . . . . . . . . . . . 15  |-  ( f : A --> U. R  ->  Fun  f )
7069adantl 463 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e. 
Top  /\  A  e.  V )  /\  (
k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R
) )  /\  f : A --> U. R )  ->  Fun  f )
71 fdm 5560 . . . . . . . . . . . . . . . 16  |-  ( f : A --> U. R  ->  dom  f  =  A )
7271adantl 463 . . . . . . . . . . . . . . 15  |-  ( ( ( ( R  e. 
Top  /\  A  e.  V )  /\  (
k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R
) )  /\  f : A --> U. R )  ->  dom  f  =  A
)
7349, 72sseqtr4d 3390 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e. 
Top  /\  A  e.  V )  /\  (
k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R
) )  /\  f : A --> U. R )  -> 
k  C_  dom  f )
74 funimass4 5739 . . . . . . . . . . . . . 14  |-  ( ( Fun  f  /\  k  C_ 
dom  f )  -> 
( ( f "
k )  C_  v  <->  A. x  e.  k  ( f `  x )  e.  v ) )
7570, 73, 74syl2anc 656 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e. 
Top  /\  A  e.  V )  /\  (
k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R
) )  /\  f : A --> U. R )  -> 
( ( f "
k )  C_  v  <->  A. x  e.  k  ( f `  x )  e.  v ) )
7662, 68, 753bitr4d 285 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. 
Top  /\  A  e.  V )  /\  (
k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R
) )  /\  f : A --> U. R )  -> 
( f  e.  X_ x  e.  A  if ( x  e.  k ,  v ,  U. R )  <->  ( f " k )  C_  v ) )
7738, 76sylan2 471 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
Top  /\  A  e.  V )  /\  (
k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R
) )  /\  f  e.  ( U. R  ^m  A ) )  -> 
( f  e.  X_ x  e.  A  if ( x  e.  k ,  v ,  U. R )  <->  ( f " k )  C_  v ) )
7877rabbi2dva 3555 . . . . . . . . . 10  |-  ( ( ( R  e.  Top  /\  A  e.  V )  /\  ( k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R ) )  -> 
( ( U. R  ^m  A )  i^i  X_ x  e.  A  if (
x  e.  k ,  v ,  U. R
) )  =  {
f  e.  ( U. R  ^m  A )  |  ( f " k
)  C_  v }
)
79 elssuni 4118 . . . . . . . . . . . . . . . 16  |-  ( v  e.  R  ->  v  C_ 
U. R )
8079ad2antll 723 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e.  Top  /\  A  e.  V )  /\  ( k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R ) )  -> 
v  C_  U. R )
81 ssid 3372 . . . . . . . . . . . . . . 15  |-  U. R  C_ 
U. R
82 sseq1 3374 . . . . . . . . . . . . . . . 16  |-  ( v  =  if ( x  e.  k ,  v ,  U. R )  ->  ( v  C_  U. R  <->  if ( x  e.  k ,  v , 
U. R )  C_  U. R ) )
83 sseq1 3374 . . . . . . . . . . . . . . . 16  |-  ( U. R  =  if (
x  e.  k ,  v ,  U. R
)  ->  ( U. R  C_  U. R  <->  if (
x  e.  k ,  v ,  U. R
)  C_  U. R ) )
8482, 83ifboth 3822 . . . . . . . . . . . . . . 15  |-  ( ( v  C_  U. R  /\  U. R  C_  U. R )  ->  if ( x  e.  k ,  v ,  U. R ) 
C_  U. R )
8580, 81, 84sylancl 657 . . . . . . . . . . . . . 14  |-  ( ( ( R  e.  Top  /\  A  e.  V )  /\  ( k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R ) )  ->  if ( x  e.  k ,  v ,  U. R )  C_  U. R
)
8685ralrimivw 2798 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  Top  /\  A  e.  V )  /\  ( k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R ) )  ->  A. x  e.  A  if ( x  e.  k ,  v ,  U. R )  C_  U. R
)
87 ss2ixp 7272 . . . . . . . . . . . . 13  |-  ( A. x  e.  A  if ( x  e.  k ,  v ,  U. R )  C_  U. R  -> 
X_ x  e.  A  if ( x  e.  k ,  v ,  U. R )  C_  X_ x  e.  A  U. R )
8886, 87syl 16 . . . . . . . . . . . 12  |-  ( ( ( R  e.  Top  /\  A  e.  V )  /\  ( k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R ) )  ->  X_ x  e.  A  if ( x  e.  k ,  v ,  U. R )  C_  X_ x  e.  A  U. R )
89 simplr 749 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  Top  /\  A  e.  V )  /\  ( k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R ) )  ->  A  e.  V )
90 uniexg 6376 . . . . . . . . . . . . . 14  |-  ( R  e.  Top  ->  U. R  e.  _V )
9190ad2antrr 720 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  Top  /\  A  e.  V )  /\  ( k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R ) )  ->  U. R  e.  _V )
92 ixpconstg 7268 . . . . . . . . . . . . 13  |-  ( ( A  e.  V  /\  U. R  e.  _V )  -> 
X_ x  e.  A  U. R  =  ( U. R  ^m  A ) )
9389, 91, 92syl2anc 656 . . . . . . . . . . . 12  |-  ( ( ( R  e.  Top  /\  A  e.  V )  /\  ( k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R ) )  ->  X_ x  e.  A  U. R  =  ( U. R  ^m  A ) )
9488, 93sseqtrd 3389 . . . . . . . . . . 11  |-  ( ( ( R  e.  Top  /\  A  e.  V )  /\  ( k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R ) )  ->  X_ x  e.  A  if ( x  e.  k ,  v ,  U. R )  C_  ( U. R  ^m  A ) )
95 dfss1 3552 . . . . . . . . . . 11  |-  ( X_ x  e.  A  if ( x  e.  k ,  v ,  U. R )  C_  ( U. R  ^m  A )  <-> 
( ( U. R  ^m  A )  i^i  X_ x  e.  A  if (
x  e.  k ,  v ,  U. R
) )  =  X_ x  e.  A  if ( x  e.  k ,  v ,  U. R ) )
9694, 95sylib 196 . . . . . . . . . 10  |-  ( ( ( R  e.  Top  /\  A  e.  V )  /\  ( k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R ) )  -> 
( ( U. R  ^m  A )  i^i  X_ x  e.  A  if (
x  e.  k ,  v ,  U. R
) )  =  X_ x  e.  A  if ( x  e.  k ,  v ,  U. R ) )
9778, 96eqtr3d 2475 . . . . . . . . 9  |-  ( ( ( R  e.  Top  /\  A  e.  V )  /\  ( k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R ) )  ->  { f  e.  ( U. R  ^m  A
)  |  ( f
" k )  C_  v }  =  X_ x  e.  A  if (
x  e.  k ,  v ,  U. R
) )
9811ad2antrr 720 . . . . . . . . . 10  |-  ( ( ( R  e.  Top  /\  A  e.  V )  /\  ( k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R ) )  -> 
( A  X.  { R } ) : A --> Top )
99 inss2 3568 . . . . . . . . . . 11  |-  ( ~P A  i^i  Fin )  C_ 
Fin
10099, 46sseldi 3351 . . . . . . . . . 10  |-  ( ( ( R  e.  Top  /\  A  e.  V )  /\  ( k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R ) )  -> 
k  e.  Fin )
101 simplrr 755 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. 
Top  /\  A  e.  V )  /\  (
k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R
) )  /\  x  e.  A )  ->  v  e.  R )
10226topopn 18478 . . . . . . . . . . . . 13  |-  ( R  e.  Top  ->  U. R  e.  R )
103102ad3antrrr 724 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. 
Top  /\  A  e.  V )  /\  (
k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R
) )  /\  x  e.  A )  ->  U. R  e.  R )
104 ifcl 3828 . . . . . . . . . . . 12  |-  ( ( v  e.  R  /\  U. R  e.  R )  ->  if ( x  e.  k ,  v ,  U. R )  e.  R )
105101, 103, 104syl2anc 656 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
Top  /\  A  e.  V )  /\  (
k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R
) )  /\  x  e.  A )  ->  if ( x  e.  k ,  v ,  U. R )  e.  R
)
106 simpll 748 . . . . . . . . . . . 12  |-  ( ( ( R  e.  Top  /\  A  e.  V )  /\  ( k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R ) )  ->  R  e.  Top )
107 fvconst2g 5928 . . . . . . . . . . . 12  |-  ( ( R  e.  Top  /\  x  e.  A )  ->  ( ( A  X.  { R } ) `  x )  =  R )
108106, 107sylan 468 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
Top  /\  A  e.  V )  /\  (
k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R
) )  /\  x  e.  A )  ->  (
( A  X.  { R } ) `  x
)  =  R )
109105, 108eleqtrrd 2518 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
Top  /\  A  e.  V )  /\  (
k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R
) )  /\  x  e.  A )  ->  if ( x  e.  k ,  v ,  U. R )  e.  ( ( A  X.  { R } ) `  x
) )
110 eldifn 3476 . . . . . . . . . . . . 13  |-  ( x  e.  ( A  \ 
k )  ->  -.  x  e.  k )
111 iffalse 3796 . . . . . . . . . . . . 13  |-  ( -.  x  e.  k  ->  if ( x  e.  k ,  v ,  U. R )  =  U. R )
112110, 111syl 16 . . . . . . . . . . . 12  |-  ( x  e.  ( A  \ 
k )  ->  if ( x  e.  k ,  v ,  U. R )  =  U. R )
113112adantl 463 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
Top  /\  A  e.  V )  /\  (
k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R
) )  /\  x  e.  ( A  \  k
) )  ->  if ( x  e.  k ,  v ,  U. R )  =  U. R )
114 eldifi 3475 . . . . . . . . . . . . 13  |-  ( x  e.  ( A  \ 
k )  ->  x  e.  A )
115114, 108sylan2 471 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. 
Top  /\  A  e.  V )  /\  (
k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R
) )  /\  x  e.  ( A  \  k
) )  ->  (
( A  X.  { R } ) `  x
)  =  R )
116115unieqd 4098 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
Top  /\  A  e.  V )  /\  (
k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R
) )  /\  x  e.  ( A  \  k
) )  ->  U. (
( A  X.  { R } ) `  x
)  =  U. R
)
117113, 116eqtr4d 2476 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
Top  /\  A  e.  V )  /\  (
k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R
) )  /\  x  e.  ( A  \  k
) )  ->  if ( x  e.  k ,  v ,  U. R )  =  U. ( ( A  X.  { R } ) `  x ) )
11889, 98, 100, 109, 117ptopn 19115 . . . . . . . . 9  |-  ( ( ( R  e.  Top  /\  A  e.  V )  /\  ( k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R ) )  ->  X_ x  e.  A  if ( x  e.  k ,  v ,  U. R )  e.  (
Xt_ `  ( A  X.  { R } ) ) )
11997, 118eqeltrd 2515 . . . . . . . 8  |-  ( ( ( R  e.  Top  /\  A  e.  V )  /\  ( k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R ) )  ->  { f  e.  ( U. R  ^m  A
)  |  ( f
" k )  C_  v }  e.  ( Xt_ `  ( A  X.  { R } ) ) )
120 eleq1 2501 . . . . . . . 8  |-  ( x  =  { f  e.  ( U. R  ^m  A )  |  ( f " k ) 
C_  v }  ->  ( x  e.  ( Xt_ `  ( A  X.  { R } ) )  <->  { f  e.  ( U. R  ^m  A )  |  ( f " k ) 
C_  v }  e.  ( Xt_ `  ( A  X.  { R }
) ) ) )
121119, 120syl5ibrcom 222 . . . . . . 7  |-  ( ( ( R  e.  Top  /\  A  e.  V )  /\  ( k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R ) )  -> 
( x  =  {
f  e.  ( U. R  ^m  A )  |  ( f " k
)  C_  v }  ->  x  e.  ( Xt_ `  ( A  X.  { R } ) ) ) )
122121rexlimdvva 2846 . . . . . 6  |-  ( ( R  e.  Top  /\  A  e.  V )  ->  ( E. k  e.  ( ~P A  i^i  Fin ) E. v  e.  R  x  =  {
f  e.  ( U. R  ^m  A )  |  ( f " k
)  C_  v }  ->  x  e.  ( Xt_ `  ( A  X.  { R } ) ) ) )
123122abssdv 3423 . . . . 5  |-  ( ( R  e.  Top  /\  A  e.  V )  ->  { x  |  E. k  e.  ( ~P A  i^i  Fin ) E. v  e.  R  x  =  { f  e.  ( U. R  ^m  A )  |  ( f " k ) 
C_  v } }  C_  ( Xt_ `  ( A  X.  { R }
) ) )
12437, 123eqsstrd 3387 . . . 4  |-  ( ( R  e.  Top  /\  A  e.  V )  ->  ran  ( k  e. 
{ x  e.  ~P A  |  ( ~P At  x )  e.  Comp } ,  v  e.  R  |->  { f  e.  ( ~P A  Cn  R
)  |  ( f
" k )  C_  v } )  C_  ( Xt_ `  ( A  X.  { R } ) ) )
125 tgfiss 18555 . . . 4  |-  ( ( ( Xt_ `  ( A  X.  { R }
) )  e.  Top  /\ 
ran  ( k  e. 
{ x  e.  ~P A  |  ( ~P At  x )  e.  Comp } ,  v  e.  R  |->  { f  e.  ( ~P A  Cn  R
)  |  ( f
" k )  C_  v } )  C_  ( Xt_ `  ( A  X.  { R } ) ) )  ->  ( topGen `  ( fi `  ran  ( k  e.  {
x  e.  ~P A  |  ( ~P At  x
)  e.  Comp } , 
v  e.  R  |->  { f  e.  ( ~P A  Cn  R )  |  ( f "
k )  C_  v } ) ) ) 
C_  ( Xt_ `  ( A  X.  { R }
) ) )
12614, 124, 125syl2anc 656 . . 3  |-  ( ( R  e.  Top  /\  A  e.  V )  ->  ( topGen `  ( fi ` 
ran  ( k  e. 
{ x  e.  ~P A  |  ( ~P At  x )  e.  Comp } ,  v  e.  R  |->  { f  e.  ( ~P A  Cn  R
)  |  ( f
" k )  C_  v } ) ) ) 
C_  ( Xt_ `  ( A  X.  { R }
) ) )
1279, 126eqsstrd 3387 . 2  |-  ( ( R  e.  Top  /\  A  e.  V )  ->  ( R  ^ko  ~P A )  C_  ( Xt_ `  ( A  X.  { R }
) ) )
128 eqid 2441 . . . . . . . 8  |-  ( Xt_ `  ( A  X.  { R } ) )  =  ( Xt_ `  ( A  X.  { R }
) )
129128, 26ptuniconst 19130 . . . . . . 7  |-  ( ( A  e.  V  /\  R  e.  Top )  ->  ( U. R  ^m  A )  =  U. ( Xt_ `  ( A  X.  { R }
) ) )
130129ancoms 450 . . . . . 6  |-  ( ( R  e.  Top  /\  A  e.  V )  ->  ( U. R  ^m  A )  =  U. ( Xt_ `  ( A  X.  { R }
) ) )
13130, 130eqtrd 2473 . . . . 5  |-  ( ( R  e.  Top  /\  A  e.  V )  ->  ( ~P A  Cn  R )  =  U. ( Xt_ `  ( A  X.  { R }
) ) )
132131oveq2d 6106 . . . 4  |-  ( ( R  e.  Top  /\  A  e.  V )  ->  ( ( Xt_ `  ( A  X.  { R }
) )t  ( ~P A  Cn  R ) )  =  ( ( Xt_ `  ( A  X.  { R }
) )t  U. ( Xt_ `  ( A  X.  { R }
) ) ) )
133 eqid 2441 . . . . . 6  |-  U. ( Xt_ `  ( A  X.  { R } ) )  =  U. ( Xt_ `  ( A  X.  { R } ) )
134133restid 14368 . . . . 5  |-  ( (
Xt_ `  ( A  X.  { R } ) )  e.  Top  ->  ( ( Xt_ `  ( A  X.  { R }
) )t  U. ( Xt_ `  ( A  X.  { R }
) ) )  =  ( Xt_ `  ( A  X.  { R }
) ) )
13514, 134syl 16 . . . 4  |-  ( ( R  e.  Top  /\  A  e.  V )  ->  ( ( Xt_ `  ( A  X.  { R }
) )t  U. ( Xt_ `  ( A  X.  { R }
) ) )  =  ( Xt_ `  ( A  X.  { R }
) ) )
136132, 135eqtrd 2473 . . 3  |-  ( ( R  e.  Top  /\  A  e.  V )  ->  ( ( Xt_ `  ( A  X.  { R }
) )t  ( ~P A  Cn  R ) )  =  ( Xt_ `  ( A  X.  { R }
) ) )
1375, 128xkoptsub 19186 . . . 4  |-  ( ( ~P A  e.  Top  /\  R  e.  Top )  ->  ( ( Xt_ `  ( A  X.  { R }
) )t  ( ~P A  Cn  R ) )  C_  ( R  ^ko  ~P A ) )
1382, 3, 137syl2anc 656 . . 3  |-  ( ( R  e.  Top  /\  A  e.  V )  ->  ( ( Xt_ `  ( A  X.  { R }
) )t  ( ~P A  Cn  R ) )  C_  ( R  ^ko  ~P A ) )
139136, 138eqsstr3d 3388 . 2  |-  ( ( R  e.  Top  /\  A  e.  V )  ->  ( Xt_ `  ( A  X.  { R }
) )  C_  ( R  ^ko  ~P A ) )
140127, 139eqssd 3370 1  |-  ( ( R  e.  Top  /\  A  e.  V )  ->  ( R  ^ko  ~P A )  =  ( Xt_ `  ( A  X.  { R }
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1364    e. wcel 1761   {cab 2427   A.wral 2713   E.wrex 2714   {crab 2717   _Vcvv 2970    \ cdif 3322    i^i cin 3324    C_ wss 3325   ifcif 3788   ~Pcpw 3857   {csn 3874   U.cuni 4088    X. cxp 4834   dom cdm 4836   ran crn 4837   "cima 4839   Fun wfun 5409    Fn wfn 5410   -->wf 5411   ` cfv 5415  (class class class)co 6090    e. cmpt2 6092    ^m cmap 7210   X_cixp 7259   Fincfn 7306   ficfi 7656   ↾t crest 14355   topGenctg 14372   Xt_cpt 14373   Topctop 18457  TopOnctopon 18458    Cn ccn 18787   Compccmp 18948    ^ko cxko 19093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-iin 4171  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-1o 6916  df-2o 6917  df-oadd 6920  df-er 7097  df-map 7212  df-ixp 7260  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-fi 7657  df-rest 14357  df-topgen 14378  df-pt 14379  df-top 18462  df-bases 18464  df-topon 18465  df-cn 18790  df-cmp 18949  df-xko 19095
This theorem is referenced by:  tmdgsum  19625  tmdgsum2  19626  symgtgp  19631
  Copyright terms: Public domain W3C validator