MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xkoopn Structured version   Unicode version

Theorem xkoopn 20215
Description: A basic open set of the compact-open topology. (Contributed by Mario Carneiro, 19-Mar-2015.)
Hypotheses
Ref Expression
xkoopn.x  |-  X  = 
U. R
xkoopn.r  |-  ( ph  ->  R  e.  Top )
xkoopn.s  |-  ( ph  ->  S  e.  Top )
xkoopn.a  |-  ( ph  ->  A  C_  X )
xkoopn.c  |-  ( ph  ->  ( Rt  A )  e.  Comp )
xkoopn.u  |-  ( ph  ->  U  e.  S )
Assertion
Ref Expression
xkoopn  |-  ( ph  ->  { f  e.  ( R  Cn  S )  |  ( f " A )  C_  U }  e.  ( S  ^ko  R ) )
Distinct variable groups:    A, f    R, f    S, f    U, f
Allowed substitution hints:    ph( f)    X( f)

Proof of Theorem xkoopn
Dummy variables  k 
v  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 6324 . . . . . . 7  |-  ( R  Cn  S )  e. 
_V
21pwex 4639 . . . . . 6  |-  ~P ( R  Cn  S )  e. 
_V
3 xkoopn.x . . . . . . . 8  |-  X  = 
U. R
4 eqid 2457 . . . . . . . 8  |-  { x  e.  ~P X  |  ( Rt  x )  e.  Comp }  =  { x  e. 
~P X  |  ( Rt  x )  e.  Comp }
5 eqid 2457 . . . . . . . 8  |-  ( k  e.  { x  e. 
~P X  |  ( Rt  x )  e.  Comp } ,  v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f "
k )  C_  v } )  =  ( k  e.  { x  e.  ~P X  |  ( Rt  x )  e.  Comp } ,  v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f "
k )  C_  v } )
63, 4, 5xkotf 20211 . . . . . . 7  |-  ( k  e.  { x  e. 
~P X  |  ( Rt  x )  e.  Comp } ,  v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f "
k )  C_  v } ) : ( { x  e.  ~P X  |  ( Rt  x
)  e.  Comp }  X.  S ) --> ~P ( R  Cn  S )
7 frn 5743 . . . . . . 7  |-  ( ( k  e.  { x  e.  ~P X  |  ( Rt  x )  e.  Comp } ,  v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f "
k )  C_  v } ) : ( { x  e.  ~P X  |  ( Rt  x
)  e.  Comp }  X.  S ) --> ~P ( R  Cn  S )  ->  ran  ( k  e.  {
x  e.  ~P X  |  ( Rt  x )  e.  Comp } ,  v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f " k ) 
C_  v } ) 
C_  ~P ( R  Cn  S ) )
86, 7ax-mp 5 . . . . . 6  |-  ran  (
k  e.  { x  e.  ~P X  |  ( Rt  x )  e.  Comp } ,  v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f "
k )  C_  v } )  C_  ~P ( R  Cn  S
)
92, 8ssexi 4601 . . . . 5  |-  ran  (
k  e.  { x  e.  ~P X  |  ( Rt  x )  e.  Comp } ,  v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f "
k )  C_  v } )  e.  _V
10 ssfii 7897 . . . . 5  |-  ( ran  ( k  e.  {
x  e.  ~P X  |  ( Rt  x )  e.  Comp } ,  v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f " k ) 
C_  v } )  e.  _V  ->  ran  ( k  e.  {
x  e.  ~P X  |  ( Rt  x )  e.  Comp } ,  v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f " k ) 
C_  v } ) 
C_  ( fi `  ran  ( k  e.  {
x  e.  ~P X  |  ( Rt  x )  e.  Comp } ,  v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f " k ) 
C_  v } ) ) )
119, 10ax-mp 5 . . . 4  |-  ran  (
k  e.  { x  e.  ~P X  |  ( Rt  x )  e.  Comp } ,  v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f "
k )  C_  v } )  C_  ( fi `  ran  ( k  e.  { x  e. 
~P X  |  ( Rt  x )  e.  Comp } ,  v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f "
k )  C_  v } ) )
12 fvex 5882 . . . . 5  |-  ( fi
`  ran  ( k  e.  { x  e.  ~P X  |  ( Rt  x
)  e.  Comp } , 
v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f " k
)  C_  v }
) )  e.  _V
13 bastg 19593 . . . . 5  |-  ( ( fi `  ran  (
k  e.  { x  e.  ~P X  |  ( Rt  x )  e.  Comp } ,  v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f "
k )  C_  v } ) )  e. 
_V  ->  ( fi `  ran  ( k  e.  {
x  e.  ~P X  |  ( Rt  x )  e.  Comp } ,  v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f " k ) 
C_  v } ) )  C_  ( topGen `  ( fi `  ran  ( k  e.  {
x  e.  ~P X  |  ( Rt  x )  e.  Comp } ,  v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f " k ) 
C_  v } ) ) ) )
1412, 13ax-mp 5 . . . 4  |-  ( fi
`  ran  ( k  e.  { x  e.  ~P X  |  ( Rt  x
)  e.  Comp } , 
v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f " k
)  C_  v }
) )  C_  ( topGen `
 ( fi `  ran  ( k  e.  {
x  e.  ~P X  |  ( Rt  x )  e.  Comp } ,  v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f " k ) 
C_  v } ) ) )
1511, 14sstri 3508 . . 3  |-  ran  (
k  e.  { x  e.  ~P X  |  ( Rt  x )  e.  Comp } ,  v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f "
k )  C_  v } )  C_  ( topGen `
 ( fi `  ran  ( k  e.  {
x  e.  ~P X  |  ( Rt  x )  e.  Comp } ,  v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f " k ) 
C_  v } ) ) )
16 xkoopn.a . . . . . . 7  |-  ( ph  ->  A  C_  X )
17 xkoopn.r . . . . . . . 8  |-  ( ph  ->  R  e.  Top )
183topopn 19541 . . . . . . . 8  |-  ( R  e.  Top  ->  X  e.  R )
19 elpw2g 4619 . . . . . . . 8  |-  ( X  e.  R  ->  ( A  e.  ~P X  <->  A 
C_  X ) )
2017, 18, 193syl 20 . . . . . . 7  |-  ( ph  ->  ( A  e.  ~P X 
<->  A  C_  X )
)
2116, 20mpbird 232 . . . . . 6  |-  ( ph  ->  A  e.  ~P X
)
22 xkoopn.c . . . . . 6  |-  ( ph  ->  ( Rt  A )  e.  Comp )
23 oveq2 6304 . . . . . . . 8  |-  ( x  =  A  ->  ( Rt  x )  =  ( Rt  A ) )
2423eleq1d 2526 . . . . . . 7  |-  ( x  =  A  ->  (
( Rt  x )  e.  Comp  <->  ( Rt  A )  e.  Comp ) )
2524elrab 3257 . . . . . 6  |-  ( A  e.  { x  e. 
~P X  |  ( Rt  x )  e.  Comp }  <-> 
( A  e.  ~P X  /\  ( Rt  A )  e.  Comp ) )
2621, 22, 25sylanbrc 664 . . . . 5  |-  ( ph  ->  A  e.  { x  e.  ~P X  |  ( Rt  x )  e.  Comp } )
27 xkoopn.u . . . . 5  |-  ( ph  ->  U  e.  S )
28 eqidd 2458 . . . . 5  |-  ( ph  ->  { f  e.  ( R  Cn  S )  |  ( f " A )  C_  U }  =  { f  e.  ( R  Cn  S
)  |  ( f
" A )  C_  U } )
29 imaeq2 5343 . . . . . . . . 9  |-  ( k  =  A  ->  (
f " k )  =  ( f " A ) )
3029sseq1d 3526 . . . . . . . 8  |-  ( k  =  A  ->  (
( f " k
)  C_  v  <->  ( f " A )  C_  v
) )
3130rabbidv 3101 . . . . . . 7  |-  ( k  =  A  ->  { f  e.  ( R  Cn  S )  |  ( f " k ) 
C_  v }  =  { f  e.  ( R  Cn  S )  |  ( f " A )  C_  v } )
3231eqeq2d 2471 . . . . . 6  |-  ( k  =  A  ->  ( { f  e.  ( R  Cn  S )  |  ( f " A )  C_  U }  =  { f  e.  ( R  Cn  S
)  |  ( f
" k )  C_  v }  <->  { f  e.  ( R  Cn  S )  |  ( f " A )  C_  U }  =  { f  e.  ( R  Cn  S
)  |  ( f
" A )  C_  v } ) )
33 sseq2 3521 . . . . . . . 8  |-  ( v  =  U  ->  (
( f " A
)  C_  v  <->  ( f " A )  C_  U
) )
3433rabbidv 3101 . . . . . . 7  |-  ( v  =  U  ->  { f  e.  ( R  Cn  S )  |  ( f " A ) 
C_  v }  =  { f  e.  ( R  Cn  S )  |  ( f " A )  C_  U } )
3534eqeq2d 2471 . . . . . 6  |-  ( v  =  U  ->  ( { f  e.  ( R  Cn  S )  |  ( f " A )  C_  U }  =  { f  e.  ( R  Cn  S
)  |  ( f
" A )  C_  v }  <->  { f  e.  ( R  Cn  S )  |  ( f " A )  C_  U }  =  { f  e.  ( R  Cn  S
)  |  ( f
" A )  C_  U } ) )
3632, 35rspc2ev 3221 . . . . 5  |-  ( ( A  e.  { x  e.  ~P X  |  ( Rt  x )  e.  Comp }  /\  U  e.  S  /\  { f  e.  ( R  Cn  S )  |  ( f " A )  C_  U }  =  { f  e.  ( R  Cn  S
)  |  ( f
" A )  C_  U } )  ->  E. k  e.  { x  e.  ~P X  |  ( Rt  x
)  e.  Comp } E. v  e.  S  {
f  e.  ( R  Cn  S )  |  ( f " A
)  C_  U }  =  { f  e.  ( R  Cn  S )  |  ( f "
k )  C_  v } )
3726, 27, 28, 36syl3anc 1228 . . . 4  |-  ( ph  ->  E. k  e.  {
x  e.  ~P X  |  ( Rt  x )  e.  Comp } E. v  e.  S  { f  e.  ( R  Cn  S
)  |  ( f
" A )  C_  U }  =  {
f  e.  ( R  Cn  S )  |  ( f " k
)  C_  v }
)
381rabex 4607 . . . . 5  |-  { f  e.  ( R  Cn  S )  |  ( f " A ) 
C_  U }  e.  _V
39 eqeq1 2461 . . . . . 6  |-  ( y  =  { f  e.  ( R  Cn  S
)  |  ( f
" A )  C_  U }  ->  ( y  =  { f  e.  ( R  Cn  S
)  |  ( f
" k )  C_  v }  <->  { f  e.  ( R  Cn  S )  |  ( f " A )  C_  U }  =  { f  e.  ( R  Cn  S
)  |  ( f
" k )  C_  v } ) )
40392rexbidv 2975 . . . . 5  |-  ( y  =  { f  e.  ( R  Cn  S
)  |  ( f
" A )  C_  U }  ->  ( E. k  e.  { x  e.  ~P X  |  ( Rt  x )  e.  Comp } E. v  e.  S  y  =  { f  e.  ( R  Cn  S
)  |  ( f
" k )  C_  v }  <->  E. k  e.  {
x  e.  ~P X  |  ( Rt  x )  e.  Comp } E. v  e.  S  { f  e.  ( R  Cn  S
)  |  ( f
" A )  C_  U }  =  {
f  e.  ( R  Cn  S )  |  ( f " k
)  C_  v }
) )
415rnmpt2 6411 . . . . 5  |-  ran  (
k  e.  { x  e.  ~P X  |  ( Rt  x )  e.  Comp } ,  v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f "
k )  C_  v } )  =  {
y  |  E. k  e.  { x  e.  ~P X  |  ( Rt  x
)  e.  Comp } E. v  e.  S  y  =  { f  e.  ( R  Cn  S )  |  ( f "
k )  C_  v } }
4238, 40, 41elab2 3249 . . . 4  |-  ( { f  e.  ( R  Cn  S )  |  ( f " A
)  C_  U }  e.  ran  ( k  e. 
{ x  e.  ~P X  |  ( Rt  x
)  e.  Comp } , 
v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f " k
)  C_  v }
)  <->  E. k  e.  {
x  e.  ~P X  |  ( Rt  x )  e.  Comp } E. v  e.  S  { f  e.  ( R  Cn  S
)  |  ( f
" A )  C_  U }  =  {
f  e.  ( R  Cn  S )  |  ( f " k
)  C_  v }
)
4337, 42sylibr 212 . . 3  |-  ( ph  ->  { f  e.  ( R  Cn  S )  |  ( f " A )  C_  U }  e.  ran  ( k  e.  { x  e. 
~P X  |  ( Rt  x )  e.  Comp } ,  v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f "
k )  C_  v } ) )
4415, 43sseldi 3497 . 2  |-  ( ph  ->  { f  e.  ( R  Cn  S )  |  ( f " A )  C_  U }  e.  ( topGen `  ( fi `  ran  ( k  e.  {
x  e.  ~P X  |  ( Rt  x )  e.  Comp } ,  v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f " k ) 
C_  v } ) ) ) )
45 xkoopn.s . . 3  |-  ( ph  ->  S  e.  Top )
463, 4, 5xkoval 20213 . . 3  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( S  ^ko  R )  =  (
topGen `  ( fi `  ran  ( k  e.  {
x  e.  ~P X  |  ( Rt  x )  e.  Comp } ,  v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f " k ) 
C_  v } ) ) ) )
4717, 45, 46syl2anc 661 . 2  |-  ( ph  ->  ( S  ^ko  R )  =  (
topGen `  ( fi `  ran  ( k  e.  {
x  e.  ~P X  |  ( Rt  x )  e.  Comp } ,  v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f " k ) 
C_  v } ) ) ) )
4844, 47eleqtrrd 2548 1  |-  ( ph  ->  { f  e.  ( R  Cn  S )  |  ( f " A )  C_  U }  e.  ( S  ^ko  R ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    = wceq 1395    e. wcel 1819   E.wrex 2808   {crab 2811   _Vcvv 3109    C_ wss 3471   ~Pcpw 4015   U.cuni 4251    X. cxp 5006   ran crn 5009   "cima 5011   -->wf 5590   ` cfv 5594  (class class class)co 6296    |-> cmpt2 6298   ficfi 7888   ↾t crest 14837   topGenctg 14854   Topctop 19520    Cn ccn 19851   Compccmp 20012    ^ko cxko 20187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-1o 7148  df-en 7536  df-fin 7539  df-fi 7889  df-topgen 14860  df-top 19525  df-xko 20189
This theorem is referenced by:  xkouni  20225  xkohaus  20279  xkoptsub  20280  xkoco1cn  20283  xkoco2cn  20284  xkococnlem  20285
  Copyright terms: Public domain W3C validator