MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xkofvcn Structured version   Unicode version

Theorem xkofvcn 20310
Description: Joint continuity of the function value operation as a function on continuous function spaces. (Compare xkopjcn 20282.) (Contributed by Mario Carneiro, 20-Mar-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
xkofvcn.1  |-  X  = 
U. R
xkofvcn.2  |-  F  =  ( f  e.  ( R  Cn  S ) ,  x  e.  X  |->  ( f `  x
) )
Assertion
Ref Expression
xkofvcn  |-  ( ( R  e. 𝑛Locally  Comp  /\  S  e.  Top )  ->  F  e.  ( ( ( S  ^ko  R )  tX  R )  Cn  S ) )
Distinct variable groups:    x, f, R    S, f, x    f, X, x
Allowed substitution hints:    F( x, f)

Proof of Theorem xkofvcn
Dummy variables  g  h  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xkofvcn.2 . 2  |-  F  =  ( f  e.  ( R  Cn  S ) ,  x  e.  X  |->  ( f `  x
) )
2 nllytop 20099 . . . 4  |-  ( R  e. 𝑛Locally 
Comp  ->  R  e.  Top )
3 eqid 2457 . . . . 5  |-  ( S  ^ko  R )  =  ( S  ^ko  R )
43xkotopon 20226 . . . 4  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( S  ^ko  R )  e.  (TopOn `  ( R  Cn  S
) ) )
52, 4sylan 471 . . 3  |-  ( ( R  e. 𝑛Locally  Comp  /\  S  e.  Top )  ->  ( S  ^ko  R )  e.  (TopOn `  ( R  Cn  S
) ) )
62adantr 465 . . . 4  |-  ( ( R  e. 𝑛Locally  Comp  /\  S  e.  Top )  ->  R  e. 
Top )
7 xkofvcn.1 . . . . 5  |-  X  = 
U. R
87toptopon 19560 . . . 4  |-  ( R  e.  Top  <->  R  e.  (TopOn `  X ) )
96, 8sylib 196 . . 3  |-  ( ( R  e. 𝑛Locally  Comp  /\  S  e.  Top )  ->  R  e.  (TopOn `  X )
)
105, 9cnmpt1st 20294 . . . 4  |-  ( ( R  e. 𝑛Locally  Comp  /\  S  e.  Top )  ->  ( f  e.  ( R  Cn  S ) ,  x  e.  X  |->  f )  e.  ( ( ( S  ^ko  R )  tX  R
)  Cn  ( S  ^ko  R ) ) )
115, 9cnmpt2nd 20295 . . . . 5  |-  ( ( R  e. 𝑛Locally  Comp  /\  S  e.  Top )  ->  ( f  e.  ( R  Cn  S ) ,  x  e.  X  |->  x )  e.  ( ( ( S  ^ko  R )  tX  R
)  Cn  R ) )
12 1on 7155 . . . . . . 7  |-  1o  e.  On
13 distopon 19624 . . . . . . 7  |-  ( 1o  e.  On  ->  ~P 1o  e.  (TopOn `  1o ) )
1412, 13mp1i 12 . . . . . 6  |-  ( ( R  e. 𝑛Locally  Comp  /\  S  e.  Top )  ->  ~P 1o  e.  (TopOn `  1o )
)
15 xkoccn 20245 . . . . . 6  |-  ( ( ~P 1o  e.  (TopOn `  1o )  /\  R  e.  (TopOn `  X )
)  ->  ( y  e.  X  |->  ( 1o 
X.  { y } ) )  e.  ( R  Cn  ( R  ^ko  ~P 1o ) ) )
1614, 9, 15syl2anc 661 . . . . 5  |-  ( ( R  e. 𝑛Locally  Comp  /\  S  e.  Top )  ->  ( y  e.  X  |->  ( 1o 
X.  { y } ) )  e.  ( R  Cn  ( R  ^ko  ~P 1o ) ) )
17 sneq 4042 . . . . . 6  |-  ( y  =  x  ->  { y }  =  { x } )
1817xpeq2d 5032 . . . . 5  |-  ( y  =  x  ->  ( 1o  X.  { y } )  =  ( 1o 
X.  { x }
) )
195, 9, 11, 9, 16, 18cnmpt21 20297 . . . 4  |-  ( ( R  e. 𝑛Locally  Comp  /\  S  e.  Top )  ->  ( f  e.  ( R  Cn  S ) ,  x  e.  X  |->  ( 1o 
X.  { x }
) )  e.  ( ( ( S  ^ko  R ) 
tX  R )  Cn  ( R  ^ko  ~P 1o ) ) )
20 distop 19623 . . . . . 6  |-  ( 1o  e.  On  ->  ~P 1o  e.  Top )
2112, 20mp1i 12 . . . . 5  |-  ( ( R  e. 𝑛Locally  Comp  /\  S  e.  Top )  ->  ~P 1o  e.  Top )
22 eqid 2457 . . . . . 6  |-  ( R  ^ko  ~P 1o )  =  ( R  ^ko  ~P 1o )
2322xkotopon 20226 . . . . 5  |-  ( ( ~P 1o  e.  Top  /\  R  e.  Top )  ->  ( R  ^ko  ~P 1o )  e.  (TopOn `  ( ~P 1o  Cn  R ) ) )
2421, 6, 23syl2anc 661 . . . 4  |-  ( ( R  e. 𝑛Locally  Comp  /\  S  e.  Top )  ->  ( R  ^ko  ~P 1o )  e.  (TopOn `  ( ~P 1o  Cn  R ) ) )
25 simpl 457 . . . . 5  |-  ( ( R  e. 𝑛Locally  Comp  /\  S  e.  Top )  ->  R  e. 𝑛Locally  Comp )
26 simpr 461 . . . . 5  |-  ( ( R  e. 𝑛Locally  Comp  /\  S  e.  Top )  ->  S  e. 
Top )
27 eqid 2457 . . . . . 6  |-  ( g  e.  ( R  Cn  S ) ,  h  e.  ( ~P 1o  Cn  R )  |->  ( g  o.  h ) )  =  ( g  e.  ( R  Cn  S
) ,  h  e.  ( ~P 1o  Cn  R )  |->  ( g  o.  h ) )
2827xkococn 20286 . . . . 5  |-  ( ( ~P 1o  e.  Top  /\  R  e. 𝑛Locally  Comp  /\  S  e.  Top )  ->  ( g  e.  ( R  Cn  S ) ,  h  e.  ( ~P 1o  Cn  R )  |->  ( g  o.  h ) )  e.  ( ( ( S  ^ko  R )  tX  ( R  ^ko  ~P 1o ) )  Cn  ( S  ^ko  ~P 1o ) ) )
2921, 25, 26, 28syl3anc 1228 . . . 4  |-  ( ( R  e. 𝑛Locally  Comp  /\  S  e.  Top )  ->  ( g  e.  ( R  Cn  S ) ,  h  e.  ( ~P 1o  Cn  R )  |->  ( g  o.  h ) )  e.  ( ( ( S  ^ko  R )  tX  ( R  ^ko  ~P 1o ) )  Cn  ( S  ^ko  ~P 1o ) ) )
30 coeq1 5170 . . . . 5  |-  ( g  =  f  ->  (
g  o.  h )  =  ( f  o.  h ) )
31 coeq2 5171 . . . . 5  |-  ( h  =  ( 1o  X.  { x } )  ->  ( f  o.  h )  =  ( f  o.  ( 1o 
X.  { x }
) ) )
3230, 31sylan9eq 2518 . . . 4  |-  ( ( g  =  f  /\  h  =  ( 1o  X.  { x } ) )  ->  ( g  o.  h )  =  ( f  o.  ( 1o 
X.  { x }
) ) )
335, 9, 10, 19, 5, 24, 29, 32cnmpt22 20300 . . 3  |-  ( ( R  e. 𝑛Locally  Comp  /\  S  e.  Top )  ->  ( f  e.  ( R  Cn  S ) ,  x  e.  X  |->  ( f  o.  ( 1o  X.  { x } ) ) )  e.  ( ( ( S  ^ko  R ) 
tX  R )  Cn  ( S  ^ko  ~P 1o ) ) )
34 eqid 2457 . . . . 5  |-  ( S  ^ko  ~P 1o )  =  ( S  ^ko  ~P 1o )
3534xkotopon 20226 . . . 4  |-  ( ( ~P 1o  e.  Top  /\  S  e.  Top )  ->  ( S  ^ko  ~P 1o )  e.  (TopOn `  ( ~P 1o  Cn  S ) ) )
3621, 26, 35syl2anc 661 . . 3  |-  ( ( R  e. 𝑛Locally  Comp  /\  S  e.  Top )  ->  ( S  ^ko  ~P 1o )  e.  (TopOn `  ( ~P 1o  Cn  S ) ) )
37 0lt1o 7172 . . . . 5  |-  (/)  e.  1o
3837a1i 11 . . . 4  |-  ( ( R  e. 𝑛Locally  Comp  /\  S  e.  Top )  ->  (/)  e.  1o )
39 unipw 4706 . . . . . 6  |-  U. ~P 1o  =  1o
4039eqcomi 2470 . . . . 5  |-  1o  =  U. ~P 1o
4140xkopjcn 20282 . . . 4  |-  ( ( ~P 1o  e.  Top  /\  S  e.  Top  /\  (/) 
e.  1o )  -> 
( g  e.  ( ~P 1o  Cn  S
)  |->  ( g `  (/) ) )  e.  ( ( S  ^ko  ~P 1o )  Cn  S ) )
4221, 26, 38, 41syl3anc 1228 . . 3  |-  ( ( R  e. 𝑛Locally  Comp  /\  S  e.  Top )  ->  ( g  e.  ( ~P 1o  Cn  S )  |->  ( g `
 (/) ) )  e.  ( ( S  ^ko  ~P 1o )  Cn  S ) )
43 fveq1 5871 . . . 4  |-  ( g  =  ( f  o.  ( 1o  X.  {
x } ) )  ->  ( g `  (/) )  =  ( ( f  o.  ( 1o 
X.  { x }
) ) `  (/) ) )
44 vex 3112 . . . . . . 7  |-  x  e. 
_V
4544fconst 5777 . . . . . 6  |-  ( 1o 
X.  { x }
) : 1o --> { x }
46 fvco3 5950 . . . . . 6  |-  ( ( ( 1o  X.  {
x } ) : 1o --> { x }  /\  (/)  e.  1o )  ->  ( ( f  o.  ( 1o  X.  { x } ) ) `  (/) )  =  ( f `  (
( 1o  X.  {
x } ) `  (/) ) ) )
4745, 37, 46mp2an 672 . . . . 5  |-  ( ( f  o.  ( 1o 
X.  { x }
) ) `  (/) )  =  ( f `  (
( 1o  X.  {
x } ) `  (/) ) )
4844fvconst2 6128 . . . . . . 7  |-  ( (/)  e.  1o  ->  ( ( 1o  X.  { x }
) `  (/) )  =  x )
4937, 48ax-mp 5 . . . . . 6  |-  ( ( 1o  X.  { x } ) `  (/) )  =  x
5049fveq2i 5875 . . . . 5  |-  ( f `
 ( ( 1o 
X.  { x }
) `  (/) ) )  =  ( f `  x )
5147, 50eqtri 2486 . . . 4  |-  ( ( f  o.  ( 1o 
X.  { x }
) ) `  (/) )  =  ( f `  x
)
5243, 51syl6eq 2514 . . 3  |-  ( g  =  ( f  o.  ( 1o  X.  {
x } ) )  ->  ( g `  (/) )  =  ( f `
 x ) )
535, 9, 33, 36, 42, 52cnmpt21 20297 . 2  |-  ( ( R  e. 𝑛Locally  Comp  /\  S  e.  Top )  ->  ( f  e.  ( R  Cn  S ) ,  x  e.  X  |->  ( f `
 x ) )  e.  ( ( ( S  ^ko  R )  tX  R
)  Cn  S ) )
541, 53syl5eqel 2549 1  |-  ( ( R  e. 𝑛Locally  Comp  /\  S  e.  Top )  ->  F  e.  ( ( ( S  ^ko  R )  tX  R )  Cn  S ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1395    e. wcel 1819   (/)c0 3793   ~Pcpw 4015   {csn 4032   U.cuni 4251    |-> cmpt 4515   Oncon0 4887    X. cxp 5006    o. ccom 5012   -->wf 5590   ` cfv 5594  (class class class)co 6296    |-> cmpt2 6298   1oc1o 7141   Topctop 19520  TopOnctopon 19521    Cn ccn 19851   Compccmp 20012  𝑛Locally cnlly 20091    tX ctx 20186    ^ko cxko 20187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-iin 4335  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-1o 7148  df-2o 7149  df-oadd 7152  df-er 7329  df-map 7440  df-ixp 7489  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-fi 7889  df-rest 14839  df-topgen 14860  df-pt 14861  df-top 19525  df-bases 19527  df-topon 19528  df-ntr 19647  df-nei 19725  df-cn 19854  df-cnp 19855  df-cmp 20013  df-nlly 20093  df-tx 20188  df-xko 20189
This theorem is referenced by:  cnmptk1p  20311  cnmptk2  20312
  Copyright terms: Public domain W3C validator