Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xihopellsmN Structured version   Unicode version

Theorem xihopellsmN 34922
Description: Ordered pair membership in a subspace sum of isomorphism H values. (Contributed by NM, 26-Sep-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
xihopellsm.b  |-  B  =  ( Base `  K
)
xihopellsm.h  |-  H  =  ( LHyp `  K
)
xihopellsm.t  |-  T  =  ( ( LTrn `  K
) `  W )
xihopellsm.e  |-  E  =  ( ( TEndo `  K
) `  W )
xihopellsm.a  |-  A  =  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `  f )  o.  (
t `  f )
) ) )
xihopellsm.u  |-  U  =  ( ( DVecH `  K
) `  W )
xihopellsm.l  |-  L  =  ( LSubSp `  U )
xihopellsm.p  |-  .(+)  =  (
LSSum `  U )
xihopellsm.i  |-  I  =  ( ( DIsoH `  K
) `  W )
xihopellsm.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
xihopellsm.x  |-  ( ph  ->  X  e.  B )
xihopellsm.y  |-  ( ph  ->  Y  e.  B )
Assertion
Ref Expression
xihopellsmN  |-  ( ph  ->  ( <. F ,  S >.  e.  ( ( I `
 X )  .(+)  ( I `  Y ) )  <->  E. g E. t E. h E. u ( ( <. g ,  t
>.  e.  ( I `  X )  /\  <. h ,  u >.  e.  ( I `  Y ) )  /\  ( F  =  ( g  o.  h )  /\  S  =  ( t A u ) ) ) ) )
Distinct variable groups:    t, s, E    g, h, t, u, F    f, g, t, H    g, I, h, t, u    f, s, K, g, t    S, g, h, t, u    U, g, h, t, u    f, W, g, s, t    g, X, h, t, u    g, Y, h, t, u    ph, g, h, t, u
Allowed substitution hints:    ph( f, s)    A( u, t, f, g, h, s)    B( u, t, f, g, h, s)    .(+) ( u, t, f, g, h, s)    S( f, s)    T( u, t, f, g, h, s)    U( f, s)    E( u, f, g, h)    F( f, s)    H( u, h, s)    I( f, s)    K( u, h)    L( u, t, f, g, h, s)    W( u, h)    X( f,
s)    Y( f, s)

Proof of Theorem xihopellsmN
StepHypRef Expression
1 xihopellsm.k . . 3  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
2 xihopellsm.x . . . 4  |-  ( ph  ->  X  e.  B )
3 xihopellsm.b . . . . 5  |-  B  =  ( Base `  K
)
4 xihopellsm.h . . . . 5  |-  H  =  ( LHyp `  K
)
5 xihopellsm.i . . . . 5  |-  I  =  ( ( DIsoH `  K
) `  W )
6 xihopellsm.u . . . . 5  |-  U  =  ( ( DVecH `  K
) `  W )
7 eqid 2443 . . . . 5  |-  ( LSubSp `  U )  =  (
LSubSp `  U )
83, 4, 5, 6, 7dihlss 34918 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B
)  ->  ( I `  X )  e.  (
LSubSp `  U ) )
91, 2, 8syl2anc 661 . . 3  |-  ( ph  ->  ( I `  X
)  e.  ( LSubSp `  U ) )
10 xihopellsm.y . . . 4  |-  ( ph  ->  Y  e.  B )
113, 4, 5, 6, 7dihlss 34918 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  e.  B
)  ->  ( I `  Y )  e.  (
LSubSp `  U ) )
121, 10, 11syl2anc 661 . . 3  |-  ( ph  ->  ( I `  Y
)  e.  ( LSubSp `  U ) )
13 eqid 2443 . . . 4  |-  ( +g  `  U )  =  ( +g  `  U )
14 xihopellsm.p . . . 4  |-  .(+)  =  (
LSSum `  U )
154, 6, 13, 7, 14dvhopellsm 34785 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( I `  X )  e.  (
LSubSp `  U )  /\  ( I `  Y
)  e.  ( LSubSp `  U ) )  -> 
( <. F ,  S >.  e.  ( ( I `
 X )  .(+)  ( I `  Y ) )  <->  E. g E. t E. h E. u ( ( <. g ,  t
>.  e.  ( I `  X )  /\  <. h ,  u >.  e.  ( I `  Y ) )  /\  <. F ,  S >.  =  ( <.
g ,  t >.
( +g  `  U )
<. h ,  u >. ) ) ) )
161, 9, 12, 15syl3anc 1218 . 2  |-  ( ph  ->  ( <. F ,  S >.  e.  ( ( I `
 X )  .(+)  ( I `  Y ) )  <->  E. g E. t E. h E. u ( ( <. g ,  t
>.  e.  ( I `  X )  /\  <. h ,  u >.  e.  ( I `  Y ) )  /\  <. F ,  S >.  =  ( <.
g ,  t >.
( +g  `  U )
<. h ,  u >. ) ) ) )
17 xihopellsm.t . . . . . . 7  |-  T  =  ( ( LTrn `  K
) `  W )
18 xihopellsm.e . . . . . . 7  |-  E  =  ( ( TEndo `  K
) `  W )
191adantr 465 . . . . . . 7  |-  ( (
ph  /\  <. g ,  t >.  e.  (
I `  X )
)  ->  ( K  e.  HL  /\  W  e.  H ) )
202adantr 465 . . . . . . 7  |-  ( (
ph  /\  <. g ,  t >.  e.  (
I `  X )
)  ->  X  e.  B )
21 simpr 461 . . . . . . 7  |-  ( (
ph  /\  <. g ,  t >.  e.  (
I `  X )
)  ->  <. g ,  t >.  e.  (
I `  X )
)
223, 4, 17, 18, 5, 19, 20, 21dihopcl 34921 . . . . . 6  |-  ( (
ph  /\  <. g ,  t >.  e.  (
I `  X )
)  ->  ( g  e.  T  /\  t  e.  E ) )
231adantr 465 . . . . . . 7  |-  ( (
ph  /\  <. h ,  u >.  e.  (
I `  Y )
)  ->  ( K  e.  HL  /\  W  e.  H ) )
2410adantr 465 . . . . . . 7  |-  ( (
ph  /\  <. h ,  u >.  e.  (
I `  Y )
)  ->  Y  e.  B )
25 simpr 461 . . . . . . 7  |-  ( (
ph  /\  <. h ,  u >.  e.  (
I `  Y )
)  ->  <. h ,  u >.  e.  (
I `  Y )
)
263, 4, 17, 18, 5, 23, 24, 25dihopcl 34921 . . . . . 6  |-  ( (
ph  /\  <. h ,  u >.  e.  (
I `  Y )
)  ->  ( h  e.  T  /\  u  e.  E ) )
2722, 26anim12dan 833 . . . . 5  |-  ( (
ph  /\  ( <. g ,  t >.  e.  ( I `  X )  /\  <. h ,  u >.  e.  ( I `  Y ) ) )  ->  ( ( g  e.  T  /\  t  e.  E )  /\  (
h  e.  T  /\  u  e.  E )
) )
281adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( (
g  e.  T  /\  t  e.  E )  /\  ( h  e.  T  /\  u  e.  E
) ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
29 simprl 755 . . . . . . . 8  |-  ( (
ph  /\  ( (
g  e.  T  /\  t  e.  E )  /\  ( h  e.  T  /\  u  e.  E
) ) )  -> 
( g  e.  T  /\  t  e.  E
) )
30 simprr 756 . . . . . . . 8  |-  ( (
ph  /\  ( (
g  e.  T  /\  t  e.  E )  /\  ( h  e.  T  /\  u  e.  E
) ) )  -> 
( h  e.  T  /\  u  e.  E
) )
31 xihopellsm.a . . . . . . . . 9  |-  A  =  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `  f )  o.  (
t `  f )
) ) )
324, 17, 18, 31, 6, 13dvhopvadd2 34762 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( g  e.  T  /\  t  e.  E )  /\  (
h  e.  T  /\  u  e.  E )
)  ->  ( <. g ,  t >. ( +g  `  U ) <.
h ,  u >. )  =  <. ( g  o.  h ) ,  ( t A u )
>. )
3328, 29, 30, 32syl3anc 1218 . . . . . . 7  |-  ( (
ph  /\  ( (
g  e.  T  /\  t  e.  E )  /\  ( h  e.  T  /\  u  e.  E
) ) )  -> 
( <. g ,  t
>. ( +g  `  U
) <. h ,  u >. )  =  <. (
g  o.  h ) ,  ( t A u ) >. )
3433eqeq2d 2454 . . . . . 6  |-  ( (
ph  /\  ( (
g  e.  T  /\  t  e.  E )  /\  ( h  e.  T  /\  u  e.  E
) ) )  -> 
( <. F ,  S >.  =  ( <. g ,  t >. ( +g  `  U ) <.
h ,  u >. )  <->  <. F ,  S >.  = 
<. ( g  o.  h
) ,  ( t A u ) >.
) )
35 vex 2994 . . . . . . . 8  |-  g  e. 
_V
36 vex 2994 . . . . . . . 8  |-  h  e. 
_V
3735, 36coex 6548 . . . . . . 7  |-  ( g  o.  h )  e. 
_V
38 ovex 6135 . . . . . . 7  |-  ( t A u )  e. 
_V
3937, 38opth2 4589 . . . . . 6  |-  ( <. F ,  S >.  = 
<. ( g  o.  h
) ,  ( t A u ) >.  <->  ( F  =  ( g  o.  h )  /\  S  =  ( t A u ) ) )
4034, 39syl6bb 261 . . . . 5  |-  ( (
ph  /\  ( (
g  e.  T  /\  t  e.  E )  /\  ( h  e.  T  /\  u  e.  E
) ) )  -> 
( <. F ,  S >.  =  ( <. g ,  t >. ( +g  `  U ) <.
h ,  u >. )  <-> 
( F  =  ( g  o.  h )  /\  S  =  ( t A u ) ) ) )
4127, 40syldan 470 . . . 4  |-  ( (
ph  /\  ( <. g ,  t >.  e.  ( I `  X )  /\  <. h ,  u >.  e.  ( I `  Y ) ) )  ->  ( <. F ,  S >.  =  ( <.
g ,  t >.
( +g  `  U )
<. h ,  u >. )  <-> 
( F  =  ( g  o.  h )  /\  S  =  ( t A u ) ) ) )
4241pm5.32da 641 . . 3  |-  ( ph  ->  ( ( ( <.
g ,  t >.  e.  ( I `  X
)  /\  <. h ,  u >.  e.  (
I `  Y )
)  /\  <. F ,  S >.  =  ( <.
g ,  t >.
( +g  `  U )
<. h ,  u >. ) )  <->  ( ( <.
g ,  t >.  e.  ( I `  X
)  /\  <. h ,  u >.  e.  (
I `  Y )
)  /\  ( F  =  ( g  o.  h )  /\  S  =  ( t A u ) ) ) ) )
43424exbidv 1684 . 2  |-  ( ph  ->  ( E. g E. t E. h E. u ( ( <.
g ,  t >.  e.  ( I `  X
)  /\  <. h ,  u >.  e.  (
I `  Y )
)  /\  <. F ,  S >.  =  ( <.
g ,  t >.
( +g  `  U )
<. h ,  u >. ) )  <->  E. g E. t E. h E. u ( ( <. g ,  t
>.  e.  ( I `  X )  /\  <. h ,  u >.  e.  ( I `  Y ) )  /\  ( F  =  ( g  o.  h )  /\  S  =  ( t A u ) ) ) ) )
4416, 43bitrd 253 1  |-  ( ph  ->  ( <. F ,  S >.  e.  ( ( I `
 X )  .(+)  ( I `  Y ) )  <->  E. g E. t E. h E. u ( ( <. g ,  t
>.  e.  ( I `  X )  /\  <. h ,  u >.  e.  ( I `  Y ) )  /\  ( F  =  ( g  o.  h )  /\  S  =  ( t A u ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369   E.wex 1586    e. wcel 1756   <.cop 3902    e. cmpt 4369    o. ccom 4863   ` cfv 5437  (class class class)co 6110    e. cmpt2 6112   Basecbs 14193   +g cplusg 14257   LSSumclsm 16152   LSubSpclss 17032   HLchlt 33018   LHypclh 33651   LTrncltrn 33768   TEndoctendo 34419   DVecHcdvh 34746   DIsoHcdih 34896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4422  ax-sep 4432  ax-nul 4440  ax-pow 4489  ax-pr 4550  ax-un 6391  ax-cnex 9357  ax-resscn 9358  ax-1cn 9359  ax-icn 9360  ax-addcl 9361  ax-addrcl 9362  ax-mulcl 9363  ax-mulrcl 9364  ax-mulcom 9365  ax-addass 9366  ax-mulass 9367  ax-distr 9368  ax-i2m1 9369  ax-1ne0 9370  ax-1rid 9371  ax-rnegex 9372  ax-rrecex 9373  ax-cnre 9374  ax-pre-lttri 9375  ax-pre-lttrn 9376  ax-pre-ltadd 9377  ax-pre-mulgt0 9378  ax-riotaBAD 32627
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2739  df-rex 2740  df-reu 2741  df-rmo 2742  df-rab 2743  df-v 2993  df-sbc 3206  df-csb 3308  df-dif 3350  df-un 3352  df-in 3354  df-ss 3361  df-pss 3363  df-nul 3657  df-if 3811  df-pw 3881  df-sn 3897  df-pr 3899  df-tp 3901  df-op 3903  df-uni 4111  df-int 4148  df-iun 4192  df-iin 4193  df-br 4312  df-opab 4370  df-mpt 4371  df-tr 4405  df-eprel 4651  df-id 4655  df-po 4660  df-so 4661  df-fr 4698  df-we 4700  df-ord 4741  df-on 4742  df-lim 4743  df-suc 4744  df-xp 4865  df-rel 4866  df-cnv 4867  df-co 4868  df-dm 4869  df-rn 4870  df-res 4871  df-ima 4872  df-iota 5400  df-fun 5439  df-fn 5440  df-f 5441  df-f1 5442  df-fo 5443  df-f1o 5444  df-fv 5445  df-riota 6071  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-om 6496  df-1st 6596  df-2nd 6597  df-tpos 6764  df-undef 6811  df-recs 6851  df-rdg 6885  df-1o 6939  df-oadd 6943  df-er 7120  df-map 7235  df-en 7330  df-dom 7331  df-sdom 7332  df-fin 7333  df-pnf 9439  df-mnf 9440  df-xr 9441  df-ltxr 9442  df-le 9443  df-sub 9616  df-neg 9617  df-nn 10342  df-2 10399  df-3 10400  df-4 10401  df-5 10402  df-6 10403  df-n0 10599  df-z 10666  df-uz 10881  df-fz 11457  df-struct 14195  df-ndx 14196  df-slot 14197  df-base 14198  df-sets 14199  df-ress 14200  df-plusg 14270  df-mulr 14271  df-sca 14273  df-vsca 14274  df-0g 14399  df-poset 15135  df-plt 15147  df-lub 15163  df-glb 15164  df-join 15165  df-meet 15166  df-p0 15228  df-p1 15229  df-lat 15235  df-clat 15297  df-mnd 15434  df-submnd 15484  df-grp 15564  df-minusg 15565  df-sbg 15566  df-subg 15697  df-cntz 15854  df-lsm 16154  df-cmn 16298  df-abl 16299  df-mgp 16611  df-ur 16623  df-rng 16666  df-oppr 16734  df-dvdsr 16752  df-unit 16753  df-invr 16783  df-dvr 16794  df-drng 16853  df-lmod 16969  df-lss 17033  df-lsp 17072  df-lvec 17203  df-oposet 32844  df-ol 32846  df-oml 32847  df-covers 32934  df-ats 32935  df-atl 32966  df-cvlat 32990  df-hlat 33019  df-llines 33165  df-lplanes 33166  df-lvols 33167  df-lines 33168  df-psubsp 33170  df-pmap 33171  df-padd 33463  df-lhyp 33655  df-laut 33656  df-ldil 33771  df-ltrn 33772  df-trl 33826  df-tendo 34422  df-edring 34424  df-disoa 34697  df-dvech 34747  df-dib 34807  df-dic 34841  df-dih 34897
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator