MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xblss2 Structured version   Unicode version

Theorem xblss2 19982
Description: One ball is contained in another if the center-to-center distance is less than the difference of the radii. In this version of blss2 19984 for extended metrics, we have to assume the balls are a finite distance apart, or else  P will not even be in the infinity ball around  Q. (Contributed by Mario Carneiro, 23-Aug-2015.)
Hypotheses
Ref Expression
xblss2.1  |-  ( ph  ->  D  e.  ( *Met `  X ) )
xblss2.2  |-  ( ph  ->  P  e.  X )
xblss2.3  |-  ( ph  ->  Q  e.  X )
xblss2.4  |-  ( ph  ->  R  e.  RR* )
xblss2.5  |-  ( ph  ->  S  e.  RR* )
xblss2.6  |-  ( ph  ->  ( P D Q )  e.  RR )
xblss2.7  |-  ( ph  ->  ( P D Q )  <_  ( S +e  -e R ) )
Assertion
Ref Expression
xblss2  |-  ( ph  ->  ( P ( ball `  D ) R ) 
C_  ( Q (
ball `  D ) S ) )

Proof of Theorem xblss2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 xblss2.1 . . . . . 6  |-  ( ph  ->  D  e.  ( *Met `  X ) )
2 xblss2.2 . . . . . 6  |-  ( ph  ->  P  e.  X )
3 xblss2.4 . . . . . 6  |-  ( ph  ->  R  e.  RR* )
4 elbl 19968 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( x  e.  ( P ( ball `  D
) R )  <->  ( x  e.  X  /\  ( P D x )  < 
R ) ) )
51, 2, 3, 4syl3anc 1218 . . . . 5  |-  ( ph  ->  ( x  e.  ( P ( ball `  D
) R )  <->  ( x  e.  X  /\  ( P D x )  < 
R ) ) )
65simprbda 623 . . . 4  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  x  e.  X
)
71adantr 465 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  D  e.  ( *Met `  X
) )
8 xblss2.3 . . . . . . . . 9  |-  ( ph  ->  Q  e.  X )
98adantr 465 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  Q  e.  X
)
10 xmetcl 19911 . . . . . . . 8  |-  ( ( D  e.  ( *Met `  X )  /\  Q  e.  X  /\  x  e.  X
)  ->  ( Q D x )  e. 
RR* )
117, 9, 6, 10syl3anc 1218 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  ( Q D x )  e.  RR* )
1211adantr 465 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( P ( ball `  D ) R ) )  /\  R  e.  RR )  ->  ( Q D x )  e. 
RR* )
13 xblss2.6 . . . . . . . . . 10  |-  ( ph  ->  ( P D Q )  e.  RR )
1413adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  ( P D Q )  e.  RR )
1514rexrd 9438 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  ( P D Q )  e.  RR* )
163adantr 465 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  R  e.  RR* )
1715, 16xaddcld 11269 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  ( ( P D Q ) +e R )  e. 
RR* )
1817adantr 465 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( P ( ball `  D ) R ) )  /\  R  e.  RR )  ->  (
( P D Q ) +e R )  e.  RR* )
19 xblss2.5 . . . . . . 7  |-  ( ph  ->  S  e.  RR* )
2019ad2antrr 725 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( P ( ball `  D ) R ) )  /\  R  e.  RR )  ->  S  e.  RR* )
212adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  P  e.  X
)
22 xmetcl 19911 . . . . . . . . . 10  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  x  e.  X
)  ->  ( P D x )  e. 
RR* )
237, 21, 6, 22syl3anc 1218 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  ( P D x )  e.  RR* )
2415, 23xaddcld 11269 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  ( ( P D Q ) +e ( P D x ) )  e. 
RR* )
25 xmettri2 19920 . . . . . . . . 9  |-  ( ( D  e.  ( *Met `  X )  /\  ( P  e.  X  /\  Q  e.  X  /\  x  e.  X ) )  -> 
( Q D x )  <_  ( ( P D Q ) +e ( P D x ) ) )
267, 21, 9, 6, 25syl13anc 1220 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  ( Q D x )  <_  (
( P D Q ) +e ( P D x ) ) )
275simplbda 624 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  ( P D x )  <  R
)
28 xltadd2 11225 . . . . . . . . . 10  |-  ( ( ( P D x )  e.  RR*  /\  R  e.  RR*  /\  ( P D Q )  e.  RR )  ->  (
( P D x )  <  R  <->  ( ( P D Q ) +e ( P D x ) )  < 
( ( P D Q ) +e
R ) ) )
2923, 16, 14, 28syl3anc 1218 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  ( ( P D x )  < 
R  <->  ( ( P D Q ) +e ( P D x ) )  < 
( ( P D Q ) +e
R ) ) )
3027, 29mpbid 210 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  ( ( P D Q ) +e ( P D x ) )  < 
( ( P D Q ) +e
R ) )
3111, 24, 17, 26, 30xrlelttrd 11139 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  ( Q D x )  <  (
( P D Q ) +e R ) )
3231adantr 465 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( P ( ball `  D ) R ) )  /\  R  e.  RR )  ->  ( Q D x )  < 
( ( P D Q ) +e
R ) )
3319adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  S  e.  RR* )
3416xnegcld 11268 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  -e R  e. 
RR* )
3533, 34xaddcld 11269 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  ( S +e  -e R )  e.  RR* )
36 xblss2.7 . . . . . . . . . 10  |-  ( ph  ->  ( P D Q )  <_  ( S +e  -e R ) )
3736adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  ( P D Q )  <_  ( S +e  -e
R ) )
38 xleadd1a 11221 . . . . . . . . 9  |-  ( ( ( ( P D Q )  e.  RR*  /\  ( S +e  -e R )  e. 
RR*  /\  R  e.  RR* )  /\  ( P D Q )  <_ 
( S +e  -e R ) )  ->  ( ( P D Q ) +e R )  <_ 
( ( S +e  -e R ) +e R ) )
3915, 35, 16, 37, 38syl31anc 1221 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  ( ( P D Q ) +e R )  <_ 
( ( S +e  -e R ) +e R ) )
4039adantr 465 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( P ( ball `  D ) R ) )  /\  R  e.  RR )  ->  (
( P D Q ) +e R )  <_  ( ( S +e  -e
R ) +e
R ) )
41 xnpcan 11220 . . . . . . . 8  |-  ( ( S  e.  RR*  /\  R  e.  RR )  ->  (
( S +e  -e R ) +e R )  =  S )
4233, 41sylan 471 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( P ( ball `  D ) R ) )  /\  R  e.  RR )  ->  (
( S +e  -e R ) +e R )  =  S )
4340, 42breqtrd 4321 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( P ( ball `  D ) R ) )  /\  R  e.  RR )  ->  (
( P D Q ) +e R )  <_  S )
4412, 18, 20, 32, 43xrltletrd 11140 . . . . 5  |-  ( ( ( ph  /\  x  e.  ( P ( ball `  D ) R ) )  /\  R  e.  RR )  ->  ( Q D x )  < 
S )
4527adantr 465 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( P ( ball `  D ) R ) )  /\  R  = +oo )  ->  ( P D x )  < 
R )
4636ad2antrr 725 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( P ( ball `  D ) R ) )  /\  R  = +oo )  ->  ( P D Q )  <_ 
( S +e  -e R ) )
47 0xr 9435 . . . . . . . . . . . . . . . 16  |-  0  e.  RR*
4847a1i 11 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  0  e.  RR* )
49 xmetge0 19924 . . . . . . . . . . . . . . . 16  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  ->  0  <_  ( P D Q ) )
507, 21, 9, 49syl3anc 1218 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  0  <_  ( P D Q ) )
5148, 15, 35, 50, 37xrletrd 11141 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  0  <_  ( S +e  -e
R ) )
52 ge0nemnf 11150 . . . . . . . . . . . . . 14  |-  ( ( ( S +e  -e R )  e. 
RR*  /\  0  <_  ( S +e  -e R ) )  ->  ( S +e  -e R )  =/= -oo )
5335, 51, 52syl2anc 661 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  ( S +e  -e R )  =/= -oo )
5453adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( P ( ball `  D ) R ) )  /\  R  = +oo )  ->  ( S +e  -e
R )  =/= -oo )
5519ad2antrr 725 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( P ( ball `  D ) R ) )  /\  R  = +oo )  ->  S  e.  RR* )
56 xaddmnf1 11203 . . . . . . . . . . . . . . . 16  |-  ( ( S  e.  RR*  /\  S  =/= +oo )  ->  ( S +e -oo )  = -oo )
5756ex 434 . . . . . . . . . . . . . . 15  |-  ( S  e.  RR*  ->  ( S  =/= +oo  ->  ( S +e -oo )  = -oo ) )
5855, 57syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( P ( ball `  D ) R ) )  /\  R  = +oo )  ->  ( S  =/= +oo  ->  ( S +e -oo )  = -oo ) )
59 simpr 461 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  ( P ( ball `  D ) R ) )  /\  R  = +oo )  ->  R  = +oo )
60 xnegeq 11182 . . . . . . . . . . . . . . . . . 18  |-  ( R  = +oo  ->  -e
R  =  -e +oo )
6159, 60syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( P ( ball `  D ) R ) )  /\  R  = +oo )  ->  -e
R  =  -e +oo )
62 xnegpnf 11184 . . . . . . . . . . . . . . . . 17  |-  -e +oo  = -oo
6361, 62syl6eq 2491 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( P ( ball `  D ) R ) )  /\  R  = +oo )  ->  -e
R  = -oo )
6463oveq2d 6112 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( P ( ball `  D ) R ) )  /\  R  = +oo )  ->  ( S +e  -e
R )  =  ( S +e -oo ) )
6564eqeq1d 2451 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( P ( ball `  D ) R ) )  /\  R  = +oo )  ->  (
( S +e  -e R )  = -oo  <->  ( S +e -oo )  = -oo ) )
6658, 65sylibrd 234 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( P ( ball `  D ) R ) )  /\  R  = +oo )  ->  ( S  =/= +oo  ->  ( S +e  -e
R )  = -oo ) )
6766necon1d 2685 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( P ( ball `  D ) R ) )  /\  R  = +oo )  ->  (
( S +e  -e R )  =/= -oo  ->  S  = +oo ) )
6854, 67mpd 15 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( P ( ball `  D ) R ) )  /\  R  = +oo )  ->  S  = +oo )
6968, 63oveq12d 6114 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( P ( ball `  D ) R ) )  /\  R  = +oo )  ->  ( S +e  -e
R )  =  ( +oo +e -oo ) )
70 pnfaddmnf 11205 . . . . . . . . . 10  |-  ( +oo +e -oo )  =  0
7169, 70syl6eq 2491 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( P ( ball `  D ) R ) )  /\  R  = +oo )  ->  ( S +e  -e
R )  =  0 )
7246, 71breqtrd 4321 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( P ( ball `  D ) R ) )  /\  R  = +oo )  ->  ( P D Q )  <_ 
0 )
7350biantrud 507 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  ( ( P D Q )  <_ 
0  <->  ( ( P D Q )  <_ 
0  /\  0  <_  ( P D Q ) ) ) )
74 xrletri3 11134 . . . . . . . . . . 11  |-  ( ( ( P D Q )  e.  RR*  /\  0  e.  RR* )  ->  (
( P D Q )  =  0  <->  (
( P D Q )  <_  0  /\  0  <_  ( P D Q ) ) ) )
7515, 47, 74sylancl 662 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  ( ( P D Q )  =  0  <->  ( ( P D Q )  <_ 
0  /\  0  <_  ( P D Q ) ) ) )
76 xmeteq0 19918 . . . . . . . . . . 11  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  ->  ( ( P D Q )  =  0  <->  P  =  Q
) )
777, 21, 9, 76syl3anc 1218 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  ( ( P D Q )  =  0  <->  P  =  Q
) )
7873, 75, 773bitr2d 281 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  ( ( P D Q )  <_ 
0  <->  P  =  Q
) )
7978adantr 465 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( P ( ball `  D ) R ) )  /\  R  = +oo )  ->  (
( P D Q )  <_  0  <->  P  =  Q ) )
8072, 79mpbid 210 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( P ( ball `  D ) R ) )  /\  R  = +oo )  ->  P  =  Q )
8180oveq1d 6111 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( P ( ball `  D ) R ) )  /\  R  = +oo )  ->  ( P D x )  =  ( Q D x ) )
8259, 68eqtr4d 2478 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( P ( ball `  D ) R ) )  /\  R  = +oo )  ->  R  =  S )
8345, 81, 823brtr3d 4326 . . . . 5  |-  ( ( ( ph  /\  x  e.  ( P ( ball `  D ) R ) )  /\  R  = +oo )  ->  ( Q D x )  < 
S )
84 xmetge0 19924 . . . . . . . . . . 11  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  x  e.  X
)  ->  0  <_  ( P D x ) )
857, 21, 6, 84syl3anc 1218 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  0  <_  ( P D x ) )
8648, 23, 16, 85, 27xrlelttrd 11139 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  0  <  R
)
87 xrltle 11131 . . . . . . . . . 10  |-  ( ( 0  e.  RR*  /\  R  e.  RR* )  ->  (
0  <  R  ->  0  <_  R ) )
8847, 16, 87sylancr 663 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  ( 0  < 
R  ->  0  <_  R ) )
8986, 88mpd 15 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  0  <_  R
)
90 ge0nemnf 11150 . . . . . . . 8  |-  ( ( R  e.  RR*  /\  0  <_  R )  ->  R  =/= -oo )
9116, 89, 90syl2anc 661 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  R  =/= -oo )
9216, 91jca 532 . . . . . 6  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  ( R  e. 
RR*  /\  R  =/= -oo ) )
93 xrnemnf 11104 . . . . . 6  |-  ( ( R  e.  RR*  /\  R  =/= -oo )  <->  ( R  e.  RR  \/  R  = +oo ) )
9492, 93sylib 196 . . . . 5  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  ( R  e.  RR  \/  R  = +oo ) )
9544, 83, 94mpjaodan 784 . . . 4  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  ( Q D x )  <  S
)
96 elbl 19968 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  Q  e.  X  /\  S  e.  RR* )  ->  ( x  e.  ( Q ( ball `  D
) S )  <->  ( x  e.  X  /\  ( Q D x )  < 
S ) ) )
977, 9, 33, 96syl3anc 1218 . . . 4  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  ( x  e.  ( Q ( ball `  D ) S )  <-> 
( x  e.  X  /\  ( Q D x )  <  S ) ) )
986, 95, 97mpbir2and 913 . . 3  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  x  e.  ( Q ( ball `  D
) S ) )
9998ex 434 . 2  |-  ( ph  ->  ( x  e.  ( P ( ball `  D
) R )  ->  x  e.  ( Q
( ball `  D ) S ) ) )
10099ssrdv 3367 1  |-  ( ph  ->  ( P ( ball `  D ) R ) 
C_  ( Q (
ball `  D ) S ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2611    C_ wss 3333   class class class wbr 4297   ` cfv 5423  (class class class)co 6096   RRcr 9286   0cc0 9287   +oocpnf 9420   -oocmnf 9421   RR*cxr 9422    < clt 9423    <_ cle 9424    -ecxne 11091   +ecxad 11092   *Metcxmt 17806   ballcbl 17808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377  ax-cnex 9343  ax-resscn 9344  ax-1cn 9345  ax-icn 9346  ax-addcl 9347  ax-addrcl 9348  ax-mulcl 9349  ax-mulrcl 9350  ax-mulcom 9351  ax-addass 9352  ax-mulass 9353  ax-distr 9354  ax-i2m1 9355  ax-1ne0 9356  ax-1rid 9357  ax-rnegex 9358  ax-rrecex 9359  ax-cnre 9360  ax-pre-lttri 9361  ax-pre-lttrn 9362  ax-pre-ltadd 9363  ax-pre-mulgt0 9364
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-nel 2614  df-ral 2725  df-rex 2726  df-reu 2727  df-rmo 2728  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-op 3889  df-uni 4097  df-iun 4178  df-br 4298  df-opab 4356  df-mpt 4357  df-id 4641  df-po 4646  df-so 4647  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-riota 6057  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-1st 6582  df-2nd 6583  df-er 7106  df-map 7221  df-en 7316  df-dom 7317  df-sdom 7318  df-pnf 9425  df-mnf 9426  df-xr 9427  df-ltxr 9428  df-le 9429  df-sub 9602  df-neg 9603  df-div 9999  df-2 10385  df-rp 10997  df-xneg 11094  df-xadd 11095  df-xmul 11096  df-psmet 17814  df-xmet 17815  df-bl 17817
This theorem is referenced by:  blss2  19984  ssbl  20003
  Copyright terms: Public domain W3C validator