MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xaddmnf2 Structured version   Unicode version

Theorem xaddmnf2 11480
Description: Addition of negative infinity on the left. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddmnf2  |-  ( ( A  e.  RR*  /\  A  =/= +oo )  ->  ( -oo +e A )  = -oo )

Proof of Theorem xaddmnf2
StepHypRef Expression
1 mnfxr 11375 . . 3  |- -oo  e.  RR*
2 xaddval 11474 . . 3  |-  ( ( -oo  e.  RR*  /\  A  e.  RR* )  ->  ( -oo +e A )  =  if ( -oo  = +oo ,  if ( A  = -oo , 
0 , +oo ) ,  if ( -oo  = -oo ,  if ( A  = +oo ,  0 , -oo ) ,  if ( A  = +oo , +oo ,  if ( A  = -oo , -oo ,  ( -oo  +  A ) ) ) ) ) )
31, 2mpan 668 . 2  |-  ( A  e.  RR*  ->  ( -oo +e A )  =  if ( -oo  = +oo ,  if ( A  = -oo , 
0 , +oo ) ,  if ( -oo  = -oo ,  if ( A  = +oo ,  0 , -oo ) ,  if ( A  = +oo , +oo ,  if ( A  = -oo , -oo ,  ( -oo  +  A ) ) ) ) ) )
4 mnfnepnf 11379 . . . . 5  |- -oo  =/= +oo
5 ifnefalse 3896 . . . . 5  |-  ( -oo  =/= +oo  ->  if ( -oo  = +oo ,  if ( A  = -oo ,  0 , +oo ) ,  if ( -oo  = -oo ,  if ( A  = +oo ,  0 , -oo ) ,  if ( A  = +oo , +oo ,  if ( A  = -oo , -oo , 
( -oo  +  A
) ) ) ) )  =  if ( -oo  = -oo ,  if ( A  = +oo ,  0 , -oo ) ,  if ( A  = +oo , +oo ,  if ( A  = -oo , -oo , 
( -oo  +  A
) ) ) ) )
64, 5ax-mp 5 . . . 4  |-  if ( -oo  = +oo ,  if ( A  = -oo ,  0 , +oo ) ,  if ( -oo  = -oo ,  if ( A  = +oo ,  0 , -oo ) ,  if ( A  = +oo , +oo ,  if ( A  = -oo , -oo , 
( -oo  +  A
) ) ) ) )  =  if ( -oo  = -oo ,  if ( A  = +oo ,  0 , -oo ) ,  if ( A  = +oo , +oo ,  if ( A  = -oo , -oo , 
( -oo  +  A
) ) ) )
7 eqid 2402 . . . . 5  |- -oo  = -oo
87iftruei 3891 . . . 4  |-  if ( -oo  = -oo ,  if ( A  = +oo ,  0 , -oo ) ,  if ( A  = +oo , +oo ,  if ( A  = -oo , -oo , 
( -oo  +  A
) ) ) )  =  if ( A  = +oo ,  0 , -oo )
96, 8eqtri 2431 . . 3  |-  if ( -oo  = +oo ,  if ( A  = -oo ,  0 , +oo ) ,  if ( -oo  = -oo ,  if ( A  = +oo ,  0 , -oo ) ,  if ( A  = +oo , +oo ,  if ( A  = -oo , -oo , 
( -oo  +  A
) ) ) ) )  =  if ( A  = +oo , 
0 , -oo )
10 ifnefalse 3896 . . 3  |-  ( A  =/= +oo  ->  if ( A  = +oo , 
0 , -oo )  = -oo )
119, 10syl5eq 2455 . 2  |-  ( A  =/= +oo  ->  if ( -oo  = +oo ,  if ( A  = -oo ,  0 , +oo ) ,  if ( -oo  = -oo ,  if ( A  = +oo ,  0 , -oo ) ,  if ( A  = +oo , +oo ,  if ( A  = -oo , -oo , 
( -oo  +  A
) ) ) ) )  = -oo )
123, 11sylan9eq 2463 1  |-  ( ( A  e.  RR*  /\  A  =/= +oo )  ->  ( -oo +e A )  = -oo )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1405    e. wcel 1842    =/= wne 2598   ifcif 3884  (class class class)co 6277   0cc0 9521    + caddc 9524   +oocpnf 9654   -oocmnf 9655   RR*cxr 9656   +ecxad 11368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6573  ax-cnex 9577  ax-1cn 9579  ax-icn 9580  ax-addcl 9581  ax-mulcl 9583  ax-i2m1 9589
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2758  df-rex 2759  df-rab 2762  df-v 3060  df-sbc 3277  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-op 3978  df-uni 4191  df-br 4395  df-opab 4453  df-id 4737  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-iota 5532  df-fun 5570  df-fv 5576  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-pnf 9659  df-mnf 9660  df-xr 9661  df-xadd 11371
This theorem is referenced by:  xaddnepnf  11486  xaddcom  11489  xaddid1  11490  xnegdi  11492  xpncan  11495  xleadd1a  11497  xlt2add  11504  xadddilem  11538  xadddi2  11541  xrsnsgrp  18772  xaddeq0  28000
  Copyright terms: Public domain W3C validator