MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xadddi2 Structured version   Unicode version

Theorem xadddi2 11501
Description: The assumption that the multiplier be real in xadddi 11499 can be relaxed if the addends have the same sign. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xadddi2  |-  ( ( A  e.  RR*  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <_  C ) )  -> 
( A xe ( B +e
C ) )  =  ( ( A xe B ) +e ( A xe C ) ) )

Proof of Theorem xadddi2
StepHypRef Expression
1 simpl1 999 . . . 4  |-  ( ( ( A  e.  RR*  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <_  C )
)  /\  0  <  B )  ->  A  e.  RR* )
2 elxr 11337 . . . 4  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
31, 2sylib 196 . . 3  |-  ( ( ( A  e.  RR*  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <_  C )
)  /\  0  <  B )  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
4 simpr 461 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <_  C ) )  /\  0  <  B )  /\  A  e.  RR )  ->  A  e.  RR )
5 simp2l 1022 . . . . . 6  |-  ( ( A  e.  RR*  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <_  C ) )  ->  B  e.  RR* )
65ad2antrr 725 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <_  C ) )  /\  0  <  B )  /\  A  e.  RR )  ->  B  e.  RR* )
7 simp3l 1024 . . . . . 6  |-  ( ( A  e.  RR*  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <_  C ) )  ->  C  e.  RR* )
87ad2antrr 725 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <_  C ) )  /\  0  <  B )  /\  A  e.  RR )  ->  C  e.  RR* )
9 xadddi 11499 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  ->  ( A xe ( B +e C ) )  =  ( ( A xe B ) +e ( A xe C ) ) )
104, 6, 8, 9syl3anc 1228 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <_  C ) )  /\  0  <  B )  /\  A  e.  RR )  ->  ( A xe ( B +e
C ) )  =  ( ( A xe B ) +e ( A xe C ) ) )
11 pnfxr 11333 . . . . . . 7  |- +oo  e.  RR*
127adantr 465 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <_  C )
)  /\  0  <  B )  ->  C  e.  RR* )
1312adantr 465 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <_  C ) )  /\  0  <  B )  /\  A  = +oo )  ->  C  e.  RR* )
14 xmulcl 11477 . . . . . . 7  |-  ( ( +oo  e.  RR*  /\  C  e.  RR* )  ->  ( +oo xe C )  e.  RR* )
1511, 13, 14sylancr 663 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <_  C ) )  /\  0  <  B )  /\  A  = +oo )  ->  ( +oo xe C )  e.  RR* )
1611, 12, 14sylancr 663 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <_  C )
)  /\  0  <  B )  ->  ( +oo xe C )  e.  RR* )
17 simpl3r 1052 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <_  C )
)  /\  0  <  B )  ->  0  <_  C )
18 0lepnf 11352 . . . . . . . . . 10  |-  0  <_ +oo
19 xmulge0 11488 . . . . . . . . . 10  |-  ( ( ( +oo  e.  RR*  /\  0  <_ +oo )  /\  ( C  e.  RR*  /\  0  <_  C )
)  ->  0  <_  ( +oo xe C ) )
2011, 18, 19mpanl12 682 . . . . . . . . 9  |-  ( ( C  e.  RR*  /\  0  <_  C )  ->  0  <_  ( +oo xe C ) )
2112, 17, 20syl2anc 661 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <_  C )
)  /\  0  <  B )  ->  0  <_  ( +oo xe C ) )
22 ge0nemnf 11386 . . . . . . . 8  |-  ( ( ( +oo xe C )  e.  RR*  /\  0  <_  ( +oo xe C ) )  ->  ( +oo xe C )  =/= -oo )
2316, 21, 22syl2anc 661 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <_  C )
)  /\  0  <  B )  ->  ( +oo xe C )  =/= -oo )
2423adantr 465 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <_  C ) )  /\  0  <  B )  /\  A  = +oo )  ->  ( +oo xe C )  =/= -oo )
25 xaddpnf2 11438 . . . . . 6  |-  ( ( ( +oo xe C )  e.  RR*  /\  ( +oo xe C )  =/= -oo )  ->  ( +oo +e ( +oo xe C ) )  = +oo )
2615, 24, 25syl2anc 661 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <_  C ) )  /\  0  <  B )  /\  A  = +oo )  ->  ( +oo +e
( +oo xe C ) )  = +oo )
27 oveq1 6302 . . . . . . 7  |-  ( A  = +oo  ->  ( A xe B )  =  ( +oo xe B ) )
28 oveq1 6302 . . . . . . 7  |-  ( A  = +oo  ->  ( A xe C )  =  ( +oo xe C ) )
2927, 28oveq12d 6313 . . . . . 6  |-  ( A  = +oo  ->  (
( A xe B ) +e
( A xe C ) )  =  ( ( +oo xe B ) +e ( +oo xe C ) ) )
30 xmulpnf2 11479 . . . . . . . 8  |-  ( ( B  e.  RR*  /\  0  <  B )  ->  ( +oo xe B )  = +oo )
315, 30sylan 471 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <_  C )
)  /\  0  <  B )  ->  ( +oo xe B )  = +oo )
3231oveq1d 6310 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <_  C )
)  /\  0  <  B )  ->  ( ( +oo xe B ) +e ( +oo xe C ) )  =  ( +oo +e ( +oo xe C ) ) )
3329, 32sylan9eqr 2530 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <_  C ) )  /\  0  <  B )  /\  A  = +oo )  ->  ( ( A xe B ) +e ( A xe C ) )  =  ( +oo +e ( +oo xe C ) ) )
34 oveq1 6302 . . . . . 6  |-  ( A  = +oo  ->  ( A xe ( B +e C ) )  =  ( +oo xe ( B +e C ) ) )
35 xaddcl 11448 . . . . . . . . 9  |-  ( ( B  e.  RR*  /\  C  e.  RR* )  ->  ( B +e C )  e.  RR* )
365, 7, 35syl2anc 661 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <_  C ) )  -> 
( B +e
C )  e.  RR* )
3736adantr 465 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <_  C )
)  /\  0  <  B )  ->  ( B +e C )  e.  RR* )
38 0xr 9652 . . . . . . . . 9  |-  0  e.  RR*
3938a1i 11 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <_  C )
)  /\  0  <  B )  ->  0  e.  RR* )
405adantr 465 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <_  C )
)  /\  0  <  B )  ->  B  e.  RR* )
41 simpr 461 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <_  C )
)  /\  0  <  B )  ->  0  <  B )
42 xaddid1 11450 . . . . . . . . . 10  |-  ( B  e.  RR*  ->  ( B +e 0 )  =  B )
4340, 42syl 16 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <_  C )
)  /\  0  <  B )  ->  ( B +e 0 )  =  B )
44 xleadd2a 11458 . . . . . . . . . 10  |-  ( ( ( 0  e.  RR*  /\  C  e.  RR*  /\  B  e.  RR* )  /\  0  <_  C )  ->  ( B +e 0 )  <_  ( B +e C ) )
4539, 12, 40, 17, 44syl31anc 1231 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <_  C )
)  /\  0  <  B )  ->  ( B +e 0 )  <_  ( B +e C ) )
4643, 45eqbrtrrd 4475 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <_  C )
)  /\  0  <  B )  ->  B  <_  ( B +e C ) )
4739, 40, 37, 41, 46xrltletrd 11376 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <_  C )
)  /\  0  <  B )  ->  0  <  ( B +e C ) )
48 xmulpnf2 11479 . . . . . . 7  |-  ( ( ( B +e
C )  e.  RR*  /\  0  <  ( B +e C ) )  ->  ( +oo xe ( B +e C ) )  = +oo )
4937, 47, 48syl2anc 661 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <_  C )
)  /\  0  <  B )  ->  ( +oo xe ( B +e C ) )  = +oo )
5034, 49sylan9eqr 2530 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <_  C ) )  /\  0  <  B )  /\  A  = +oo )  ->  ( A xe ( B +e
C ) )  = +oo )
5126, 33, 503eqtr4rd 2519 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <_  C ) )  /\  0  <  B )  /\  A  = +oo )  ->  ( A xe ( B +e
C ) )  =  ( ( A xe B ) +e ( A xe C ) ) )
52 mnfxr 11335 . . . . . . . 8  |- -oo  e.  RR*
53 xmulcl 11477 . . . . . . . 8  |-  ( ( -oo  e.  RR*  /\  C  e.  RR* )  ->  ( -oo xe C )  e.  RR* )
5452, 12, 53sylancr 663 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <_  C )
)  /\  0  <  B )  ->  ( -oo xe C )  e.  RR* )
55 xnegmnf 11421 . . . . . . . . . . . . 13  |-  -e -oo  = +oo
5655oveq1i 6305 . . . . . . . . . . . 12  |-  (  -e -oo xe C )  =  ( +oo xe C )
57 xmulneg1 11473 . . . . . . . . . . . . 13  |-  ( ( -oo  e.  RR*  /\  C  e.  RR* )  ->  (  -e -oo xe C )  =  -e ( -oo xe C ) )
5852, 12, 57sylancr 663 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR*  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <_  C )
)  /\  0  <  B )  ->  (  -e -oo xe C )  =  -e ( -oo xe C ) )
5956, 58syl5reqr 2523 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR*  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <_  C )
)  /\  0  <  B )  ->  -e ( -oo xe C )  =  ( +oo xe C ) )
60 xnegpnf 11420 . . . . . . . . . . . 12  |-  -e +oo  = -oo
6160a1i 11 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR*  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <_  C )
)  /\  0  <  B )  ->  -e +oo  = -oo )
6259, 61eqeq12d 2489 . . . . . . . . . 10  |-  ( ( ( A  e.  RR*  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <_  C )
)  /\  0  <  B )  ->  (  -e
( -oo xe C )  =  -e +oo 
<->  ( +oo xe C )  = -oo ) )
63 xneg11 11426 . . . . . . . . . . 11  |-  ( ( ( -oo xe C )  e.  RR*  /\ +oo  e.  RR* )  ->  (  -e ( -oo xe C )  = 
-e +oo  <->  ( -oo xe C )  = +oo ) )
6454, 11, 63sylancl 662 . . . . . . . . . 10  |-  ( ( ( A  e.  RR*  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <_  C )
)  /\  0  <  B )  ->  (  -e
( -oo xe C )  =  -e +oo 
<->  ( -oo xe C )  = +oo ) )
6562, 64bitr3d 255 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <_  C )
)  /\  0  <  B )  ->  ( ( +oo xe C )  = -oo  <->  ( -oo xe C )  = +oo ) )
6665necon3bid 2725 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <_  C )
)  /\  0  <  B )  ->  ( ( +oo xe C )  =/= -oo  <->  ( -oo xe C )  =/= +oo ) )
6723, 66mpbid 210 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <_  C )
)  /\  0  <  B )  ->  ( -oo xe C )  =/= +oo )
68 xaddmnf2 11440 . . . . . . 7  |-  ( ( ( -oo xe C )  e.  RR*  /\  ( -oo xe C )  =/= +oo )  ->  ( -oo +e ( -oo xe C ) )  = -oo )
6954, 67, 68syl2anc 661 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <_  C )
)  /\  0  <  B )  ->  ( -oo +e ( -oo xe C ) )  = -oo )
7069adantr 465 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <_  C ) )  /\  0  <  B )  /\  A  = -oo )  ->  ( -oo +e
( -oo xe C ) )  = -oo )
71 oveq1 6302 . . . . . . 7  |-  ( A  = -oo  ->  ( A xe B )  =  ( -oo xe B ) )
72 oveq1 6302 . . . . . . 7  |-  ( A  = -oo  ->  ( A xe C )  =  ( -oo xe C ) )
7371, 72oveq12d 6313 . . . . . 6  |-  ( A  = -oo  ->  (
( A xe B ) +e
( A xe C ) )  =  ( ( -oo xe B ) +e ( -oo xe C ) ) )
74 xmulmnf2 11481 . . . . . . . 8  |-  ( ( B  e.  RR*  /\  0  <  B )  ->  ( -oo xe B )  = -oo )
755, 74sylan 471 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <_  C )
)  /\  0  <  B )  ->  ( -oo xe B )  = -oo )
7675oveq1d 6310 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <_  C )
)  /\  0  <  B )  ->  ( ( -oo xe B ) +e ( -oo xe C ) )  =  ( -oo +e ( -oo xe C ) ) )
7773, 76sylan9eqr 2530 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <_  C ) )  /\  0  <  B )  /\  A  = -oo )  ->  ( ( A xe B ) +e ( A xe C ) )  =  ( -oo +e ( -oo xe C ) ) )
78 oveq1 6302 . . . . . 6  |-  ( A  = -oo  ->  ( A xe ( B +e C ) )  =  ( -oo xe ( B +e C ) ) )
79 xmulmnf2 11481 . . . . . . 7  |-  ( ( ( B +e
C )  e.  RR*  /\  0  <  ( B +e C ) )  ->  ( -oo xe ( B +e C ) )  = -oo )
8037, 47, 79syl2anc 661 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <_  C )
)  /\  0  <  B )  ->  ( -oo xe ( B +e C ) )  = -oo )
8178, 80sylan9eqr 2530 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <_  C ) )  /\  0  <  B )  /\  A  = -oo )  ->  ( A xe ( B +e
C ) )  = -oo )
8270, 77, 813eqtr4rd 2519 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <_  C ) )  /\  0  <  B )  /\  A  = -oo )  ->  ( A xe ( B +e
C ) )  =  ( ( A xe B ) +e ( A xe C ) ) )
8310, 51, 823jaodan 1294 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <_  C ) )  /\  0  <  B )  /\  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )  ->  ( A xe ( B +e C ) )  =  ( ( A xe B ) +e ( A xe C ) ) )
843, 83mpdan 668 . 2  |-  ( ( ( A  e.  RR*  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <_  C )
)  /\  0  <  B )  ->  ( A xe ( B +e C ) )  =  ( ( A xe B ) +e ( A xe C ) ) )
85 simp1 996 . . . . . 6  |-  ( ( A  e.  RR*  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <_  C ) )  ->  A  e.  RR* )
86 xmulcl 11477 . . . . . 6  |-  ( ( A  e.  RR*  /\  C  e.  RR* )  ->  ( A xe C )  e.  RR* )
8785, 7, 86syl2anc 661 . . . . 5  |-  ( ( A  e.  RR*  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <_  C ) )  -> 
( A xe C )  e.  RR* )
8887adantr 465 . . . 4  |-  ( ( ( A  e.  RR*  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <_  C )
)  /\  0  =  B )  ->  ( A xe C )  e.  RR* )
89 xaddid2 11451 . . . 4  |-  ( ( A xe C )  e.  RR*  ->  ( 0 +e ( A xe C ) )  =  ( A xe C ) )
9088, 89syl 16 . . 3  |-  ( ( ( A  e.  RR*  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <_  C )
)  /\  0  =  B )  ->  (
0 +e ( A xe C ) )  =  ( A xe C ) )
91 oveq2 6303 . . . . . 6  |-  ( 0  =  B  ->  ( A xe 0 )  =  ( A xe B ) )
9291eqcomd 2475 . . . . 5  |-  ( 0  =  B  ->  ( A xe B )  =  ( A xe 0 ) )
93 xmul01 11471 . . . . . 6  |-  ( A  e.  RR*  ->  ( A xe 0 )  =  0 )
94933ad2ant1 1017 . . . . 5  |-  ( ( A  e.  RR*  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <_  C ) )  -> 
( A xe 0 )  =  0 )
9592, 94sylan9eqr 2530 . . . 4  |-  ( ( ( A  e.  RR*  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <_  C )
)  /\  0  =  B )  ->  ( A xe B )  =  0 )
9695oveq1d 6310 . . 3  |-  ( ( ( A  e.  RR*  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <_  C )
)  /\  0  =  B )  ->  (
( A xe B ) +e
( A xe C ) )  =  ( 0 +e
( A xe C ) ) )
97 oveq1 6302 . . . . . 6  |-  ( 0  =  B  ->  (
0 +e C )  =  ( B +e C ) )
9897eqcomd 2475 . . . . 5  |-  ( 0  =  B  ->  ( B +e C )  =  ( 0 +e C ) )
99 xaddid2 11451 . . . . . 6  |-  ( C  e.  RR*  ->  ( 0 +e C )  =  C )
1007, 99syl 16 . . . . 5  |-  ( ( A  e.  RR*  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <_  C ) )  -> 
( 0 +e
C )  =  C )
10198, 100sylan9eqr 2530 . . . 4  |-  ( ( ( A  e.  RR*  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <_  C )
)  /\  0  =  B )  ->  ( B +e C )  =  C )
102101oveq2d 6311 . . 3  |-  ( ( ( A  e.  RR*  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <_  C )
)  /\  0  =  B )  ->  ( A xe ( B +e C ) )  =  ( A xe C ) )
10390, 96, 1023eqtr4rd 2519 . 2  |-  ( ( ( A  e.  RR*  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <_  C )
)  /\  0  =  B )  ->  ( A xe ( B +e C ) )  =  ( ( A xe B ) +e ( A xe C ) ) )
104 simp2r 1023 . . 3  |-  ( ( A  e.  RR*  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <_  C ) )  -> 
0  <_  B )
105 xrleloe 11362 . . . 4  |-  ( ( 0  e.  RR*  /\  B  e.  RR* )  ->  (
0  <_  B  <->  ( 0  <  B  \/  0  =  B ) ) )
10638, 5, 105sylancr 663 . . 3  |-  ( ( A  e.  RR*  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <_  C ) )  -> 
( 0  <_  B  <->  ( 0  <  B  \/  0  =  B )
) )
107104, 106mpbid 210 . 2  |-  ( ( A  e.  RR*  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <_  C ) )  -> 
( 0  <  B  \/  0  =  B
) )
10884, 103, 107mpjaodan 784 1  |-  ( ( A  e.  RR*  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <_  C ) )  -> 
( A xe ( B +e
C ) )  =  ( ( A xe B ) +e ( A xe C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    \/ w3o 972    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   class class class wbr 4453  (class class class)co 6295   RRcr 9503   0cc0 9504   +oocpnf 9637   -oocmnf 9638   RR*cxr 9639    < clt 9640    <_ cle 9641    -ecxne 11327   +ecxad 11328   xecxmu 11329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-id 4801  df-po 4806  df-so 4807  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-1st 6795  df-2nd 6796  df-er 7323  df-en 7529  df-dom 7530  df-sdom 7531  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-xneg 11330  df-xadd 11331  df-xmul 11332
This theorem is referenced by:  xadddi2r  11502
  Copyright terms: Public domain W3C validator