MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xaddcl Structured version   Unicode version

Theorem xaddcl 11436
Description: The extended real addition operation is closed in extended reals. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddcl  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A +e B )  e.  RR* )

Proof of Theorem xaddcl
StepHypRef Expression
1 xaddf 11423 . 2  |-  +e : ( RR*  X.  RR* )
--> RR*
21fovcl 6391 1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A +e B )  e.  RR* )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    e. wcel 1767  (class class class)co 6284   RR*cxr 9627   +ecxad 11316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-cnex 9548  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-i2m1 9560  ax-1ne0 9561  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-fv 5596  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-1st 6784  df-2nd 6785  df-pnf 9630  df-mnf 9631  df-xr 9632  df-xadd 11319
This theorem is referenced by:  xaddass  11441  xaddass2  11442  xleadd1a  11445  xleadd1  11447  xltadd1  11448  xaddge0  11450  xle2add  11451  xlt2add  11452  xsubge0  11453  xposdif  11454  xlesubadd  11455  xadddi  11487  xadddir  11488  xadddi2  11489  xadddi2r  11490  xaddcld  11493  ge0xaddcl  11634  xrs1mnd  18252  xrsds  18257  xrsxmet  21077  xrofsup  27278
  Copyright terms: Public domain W3C validator