MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xaddcl Structured version   Unicode version

Theorem xaddcl 11530
Description: The extended real addition operation is closed in extended reals. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddcl  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A +e B )  e.  RR* )

Proof of Theorem xaddcl
StepHypRef Expression
1 xaddf 11517 . 2  |-  +e : ( RR*  X.  RR* )
--> RR*
21fovcl 6415 1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A +e B )  e.  RR* )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    e. wcel 1870  (class class class)co 6305   RR*cxr 9673   +ecxad 11407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-cnex 9594  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-i2m1 9606  ax-1ne0 9607  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-ral 2787  df-rex 2788  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-op 4009  df-uni 4223  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-id 4769  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-fv 5609  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-1st 6807  df-2nd 6808  df-pnf 9676  df-mnf 9677  df-xr 9678  df-xadd 11410
This theorem is referenced by:  xaddass  11535  xaddass2  11536  xleadd1a  11539  xleadd1  11541  xltadd1  11542  xaddge0  11544  xle2add  11545  xlt2add  11546  xsubge0  11547  xposdif  11548  xlesubadd  11549  xadddi  11581  xadddir  11582  xadddi2  11583  xadddi2r  11584  xaddcld  11587  ge0xaddcl  11744  xrsmgm  18938  xrs1mnd  18941  xrsds  18946  xrsxmet  21738  xrofsup  28189  supxrgelem  37169
  Copyright terms: Public domain W3C validator