MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlknext Structured version   Unicode version

Theorem wwlknext 25437
Description: Extension of a walk (as word) by adding an edge/vertex. (Contributed by Alexander van der Vekens, 4-Aug-2018.)
Assertion
Ref Expression
wwlknext  |-  ( ( T  e.  ( ( V WWalksN  E ) `  N
)  /\  S  e.  V  /\  { ( lastS  `  T
) ,  S }  e.  ran  E )  -> 
( T ++  <" S "> )  e.  ( ( V WWalksN  E ) `  ( N  +  1 ) ) )

Proof of Theorem wwlknext
Dummy variable  i is distinct from all other variables.
StepHypRef Expression
1 wwlknprop 25399 . . 3  |-  ( T  e.  ( ( V WWalksN  E ) `  N
)  ->  ( ( V  e.  _V  /\  E  e.  _V )  /\  ( N  e.  NN0  /\  T  e. Word  V ) ) )
2 wwlknimp 25400 . . . . . . . . . . . 12  |-  ( T  e.  ( ( V WWalksN  E ) `  N
)  ->  ( T  e. Word  V  /\  ( # `  T )  =  ( N  +  1 )  /\  A. i  e.  ( 0..^ N ) { ( T `  i ) ,  ( T `  ( i  +  1 ) ) }  e.  ran  E
) )
3 simp1 1005 . . . . . . . . . . . . . . . . 17  |-  ( ( T  e. Word  V  /\  ( # `  T )  =  ( N  + 
1 )  /\  A. i  e.  ( 0..^ N ) { ( T `  i ) ,  ( T `  ( i  +  1 ) ) }  e.  ran  E )  ->  T  e. Word  V )
4 simprl 762 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  NN0  /\  ( S  e.  V  /\  { ( lastS  `  T
) ,  S }  e.  ran  E ) )  ->  S  e.  V
)
5 cats1un 12822 . . . . . . . . . . . . . . . . 17  |-  ( ( T  e. Word  V  /\  S  e.  V )  ->  ( T ++  <" S "> )  =  ( T  u.  { <. (
# `  T ) ,  S >. } ) )
63, 4, 5syl2an 479 . . . . . . . . . . . . . . . 16  |-  ( ( ( T  e. Word  V  /\  ( # `  T
)  =  ( N  +  1 )  /\  A. i  e.  ( 0..^ N ) { ( T `  i ) ,  ( T `  ( i  +  1 ) ) }  e.  ran  E )  /\  ( N  e.  NN0  /\  ( S  e.  V  /\  { ( lastS  `  T ) ,  S }  e.  ran  E ) ) )  -> 
( T ++  <" S "> )  =  ( T  u.  { <. (
# `  T ) ,  S >. } ) )
7 opex 4681 . . . . . . . . . . . . . . . . . . . . 21  |-  <. ( # `
 T ) ,  S >.  e.  _V
87snnz 4115 . . . . . . . . . . . . . . . . . . . 20  |-  { <. (
# `  T ) ,  S >. }  =/=  (/)
98neii 2622 . . . . . . . . . . . . . . . . . . 19  |-  -.  { <. ( # `  T
) ,  S >. }  =  (/)
109intnan 922 . . . . . . . . . . . . . . . . . 18  |-  -.  ( T  =  (/)  /\  { <. ( # `  T
) ,  S >. }  =  (/) )
11 df-ne 2620 . . . . . . . . . . . . . . . . . . 19  |-  ( ( T  u.  { <. (
# `  T ) ,  S >. } )  =/=  (/) 
<->  -.  ( T  u.  {
<. ( # `  T
) ,  S >. } )  =  (/) )
12 un00 3828 . . . . . . . . . . . . . . . . . . 19  |-  ( ( T  =  (/)  /\  { <. ( # `  T
) ,  S >. }  =  (/) )  <->  ( T  u.  { <. ( # `  T
) ,  S >. } )  =  (/) )
1311, 12xchbinxr 312 . . . . . . . . . . . . . . . . . 18  |-  ( ( T  u.  { <. (
# `  T ) ,  S >. } )  =/=  (/) 
<->  -.  ( T  =  (/)  /\  { <. ( # `
 T ) ,  S >. }  =  (/) ) )
1410, 13mpbir 212 . . . . . . . . . . . . . . . . 17  |-  ( T  u.  { <. ( # `
 T ) ,  S >. } )  =/=  (/)
1514a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( ( T  e. Word  V  /\  ( # `  T
)  =  ( N  +  1 )  /\  A. i  e.  ( 0..^ N ) { ( T `  i ) ,  ( T `  ( i  +  1 ) ) }  e.  ran  E )  /\  ( N  e.  NN0  /\  ( S  e.  V  /\  { ( lastS  `  T ) ,  S }  e.  ran  E ) ) )  -> 
( T  u.  { <. ( # `  T
) ,  S >. } )  =/=  (/) )
166, 15eqnetrd 2717 . . . . . . . . . . . . . . 15  |-  ( ( ( T  e. Word  V  /\  ( # `  T
)  =  ( N  +  1 )  /\  A. i  e.  ( 0..^ N ) { ( T `  i ) ,  ( T `  ( i  +  1 ) ) }  e.  ran  E )  /\  ( N  e.  NN0  /\  ( S  e.  V  /\  { ( lastS  `  T ) ,  S }  e.  ran  E ) ) )  -> 
( T ++  <" S "> )  =/=  (/) )
17 s1cl 12733 . . . . . . . . . . . . . . . . 17  |-  ( S  e.  V  ->  <" S ">  e. Word  V )
1817ad2antrl 732 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN0  /\  ( S  e.  V  /\  { ( lastS  `  T
) ,  S }  e.  ran  E ) )  ->  <" S ">  e. Word  V )
19 ccatcl 12712 . . . . . . . . . . . . . . . 16  |-  ( ( T  e. Word  V  /\  <" S ">  e. Word  V )  ->  ( T ++  <" S "> )  e. Word  V )
203, 18, 19syl2an 479 . . . . . . . . . . . . . . 15  |-  ( ( ( T  e. Word  V  /\  ( # `  T
)  =  ( N  +  1 )  /\  A. i  e.  ( 0..^ N ) { ( T `  i ) ,  ( T `  ( i  +  1 ) ) }  e.  ran  E )  /\  ( N  e.  NN0  /\  ( S  e.  V  /\  { ( lastS  `  T ) ,  S }  e.  ran  E ) ) )  -> 
( T ++  <" S "> )  e. Word  V
)
21 simplrl 768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( ( ( S  e.  V  /\  N  e. 
NN0 )  /\  ( T  e. Word  V  /\  ( # `
 T )  =  ( N  +  1 ) ) )  /\  i  e.  ( 0..^ N ) )  ->  T  e. Word  V )
22 simpll 758 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( ( S  e.  V  /\  N  e.  NN0 )  /\  ( T  e. Word  V  /\  ( # `  T
)  =  ( N  +  1 ) ) )  ->  S  e.  V )
2322adantr 466 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( ( ( S  e.  V  /\  N  e. 
NN0 )  /\  ( T  e. Word  V  /\  ( # `
 T )  =  ( N  +  1 ) ) )  /\  i  e.  ( 0..^ N ) )  ->  S  e.  V )
24 fzossfzop1 11990 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( N  e.  NN0  ->  ( 0..^ N )  C_  (
0..^ ( N  + 
1 ) ) )
2524sseld 3463 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( N  e.  NN0  ->  ( i  e.  ( 0..^ N )  ->  i  e.  ( 0..^ ( N  + 
1 ) ) ) )
2625ad2antlr 731 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( ( ( S  e.  V  /\  N  e.  NN0 )  /\  ( T  e. Word  V  /\  ( # `  T
)  =  ( N  +  1 ) ) )  ->  ( i  e.  ( 0..^ N )  ->  i  e.  ( 0..^ ( N  + 
1 ) ) ) )
2726imp 430 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( ( ( S  e.  V  /\  N  e. 
NN0 )  /\  ( T  e. Word  V  /\  ( # `
 T )  =  ( N  +  1 ) ) )  /\  i  e.  ( 0..^ N ) )  -> 
i  e.  ( 0..^ ( N  +  1 ) ) )
28 oveq2 6309 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( (
# `  T )  =  ( N  + 
1 )  ->  (
0..^ ( # `  T
) )  =  ( 0..^ ( N  + 
1 ) ) )
2928eleq2d 2492 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( (
# `  T )  =  ( N  + 
1 )  ->  (
i  e.  ( 0..^ ( # `  T
) )  <->  i  e.  ( 0..^ ( N  + 
1 ) ) ) )
3029adantl 467 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( ( T  e. Word  V  /\  ( # `  T )  =  ( N  + 
1 ) )  -> 
( i  e.  ( 0..^ ( # `  T
) )  <->  i  e.  ( 0..^ ( N  + 
1 ) ) ) )
3130ad2antlr 731 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( ( ( S  e.  V  /\  N  e. 
NN0 )  /\  ( T  e. Word  V  /\  ( # `
 T )  =  ( N  +  1 ) ) )  /\  i  e.  ( 0..^ N ) )  -> 
( i  e.  ( 0..^ ( # `  T
) )  <->  i  e.  ( 0..^ ( N  + 
1 ) ) ) )
3227, 31mpbird 235 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( ( ( S  e.  V  /\  N  e. 
NN0 )  /\  ( T  e. Word  V  /\  ( # `
 T )  =  ( N  +  1 ) ) )  /\  i  e.  ( 0..^ N ) )  -> 
i  e.  ( 0..^ ( # `  T
) ) )
33 ccats1val1 12749 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( T  e. Word  V  /\  S  e.  V  /\  i  e.  ( 0..^ ( # `  T
) ) )  -> 
( ( T ++  <" S "> ) `  i )  =  ( T `  i ) )
3421, 23, 32, 33syl3anc 1264 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( ( ( S  e.  V  /\  N  e. 
NN0 )  /\  ( T  e. Word  V  /\  ( # `
 T )  =  ( N  +  1 ) ) )  /\  i  e.  ( 0..^ N ) )  -> 
( ( T ++  <" S "> ) `  i )  =  ( T `  i ) )
3534eqcomd 2430 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( ( S  e.  V  /\  N  e. 
NN0 )  /\  ( T  e. Word  V  /\  ( # `
 T )  =  ( N  +  1 ) ) )  /\  i  e.  ( 0..^ N ) )  -> 
( T `  i
)  =  ( ( T ++  <" S "> ) `  i ) )
36 fzonn0p1p1 11991 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( i  e.  ( 0..^ N )  ->  ( i  +  1 )  e.  ( 0..^ ( N  +  1 ) ) )
3736adantl 467 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( ( ( S  e.  V  /\  N  e. 
NN0 )  /\  ( T  e. Word  V  /\  ( # `
 T )  =  ( N  +  1 ) ) )  /\  i  e.  ( 0..^ N ) )  -> 
( i  +  1 )  e.  ( 0..^ ( N  +  1 ) ) )
3828adantl 467 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( ( T  e. Word  V  /\  ( # `  T )  =  ( N  + 
1 ) )  -> 
( 0..^ ( # `  T ) )  =  ( 0..^ ( N  +  1 ) ) )
3938ad2antlr 731 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( ( ( S  e.  V  /\  N  e. 
NN0 )  /\  ( T  e. Word  V  /\  ( # `
 T )  =  ( N  +  1 ) ) )  /\  i  e.  ( 0..^ N ) )  -> 
( 0..^ ( # `  T ) )  =  ( 0..^ ( N  +  1 ) ) )
4037, 39eleqtrrd 2513 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( ( ( S  e.  V  /\  N  e. 
NN0 )  /\  ( T  e. Word  V  /\  ( # `
 T )  =  ( N  +  1 ) ) )  /\  i  e.  ( 0..^ N ) )  -> 
( i  +  1 )  e.  ( 0..^ ( # `  T
) ) )
41 ccats1val1 12749 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( T  e. Word  V  /\  S  e.  V  /\  ( i  +  1 )  e.  ( 0..^ ( # `  T
) ) )  -> 
( ( T ++  <" S "> ) `  ( i  +  1 ) )  =  ( T `  ( i  +  1 ) ) )
4221, 23, 40, 41syl3anc 1264 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( ( ( S  e.  V  /\  N  e. 
NN0 )  /\  ( T  e. Word  V  /\  ( # `
 T )  =  ( N  +  1 ) ) )  /\  i  e.  ( 0..^ N ) )  -> 
( ( T ++  <" S "> ) `  ( i  +  1 ) )  =  ( T `  ( i  +  1 ) ) )
4342eqcomd 2430 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( ( S  e.  V  /\  N  e. 
NN0 )  /\  ( T  e. Word  V  /\  ( # `
 T )  =  ( N  +  1 ) ) )  /\  i  e.  ( 0..^ N ) )  -> 
( T `  (
i  +  1 ) )  =  ( ( T ++  <" S "> ) `  ( i  +  1 ) ) )
4435, 43preq12d 4084 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( ( S  e.  V  /\  N  e. 
NN0 )  /\  ( T  e. Word  V  /\  ( # `
 T )  =  ( N  +  1 ) ) )  /\  i  e.  ( 0..^ N ) )  ->  { ( T `  i ) ,  ( T `  ( i  +  1 ) ) }  =  { ( ( T ++  <" S "> ) `  i
) ,  ( ( T ++  <" S "> ) `  ( i  +  1 ) ) } )
4544exp41 613 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( S  e.  V  ->  ( N  e.  NN0  ->  (
( T  e. Word  V  /\  ( # `  T
)  =  ( N  +  1 ) )  ->  ( i  e.  ( 0..^ N )  ->  { ( T `
 i ) ,  ( T `  (
i  +  1 ) ) }  =  {
( ( T ++  <" S "> ) `  i ) ,  ( ( T ++  <" S "> ) `  (
i  +  1 ) ) } ) ) ) )
4645adantr 466 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( S  e.  V  /\  { ( lastS  `  T ) ,  S }  e.  ran  E )  ->  ( N  e.  NN0  ->  ( ( T  e. Word  V  /\  ( # `
 T )  =  ( N  +  1 ) )  ->  (
i  e.  ( 0..^ N )  ->  { ( T `  i ) ,  ( T `  ( i  +  1 ) ) }  =  { ( ( T ++ 
<" S "> ) `  i ) ,  ( ( T ++ 
<" S "> ) `  ( i  +  1 ) ) } ) ) ) )
4746impcom 431 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( N  e.  NN0  /\  ( S  e.  V  /\  { ( lastS  `  T
) ,  S }  e.  ran  E ) )  ->  ( ( T  e. Word  V  /\  ( # `
 T )  =  ( N  +  1 ) )  ->  (
i  e.  ( 0..^ N )  ->  { ( T `  i ) ,  ( T `  ( i  +  1 ) ) }  =  { ( ( T ++ 
<" S "> ) `  i ) ,  ( ( T ++ 
<" S "> ) `  ( i  +  1 ) ) } ) ) )
4847impcom 431 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( T  e. Word  V  /\  ( # `  T
)  =  ( N  +  1 ) )  /\  ( N  e. 
NN0  /\  ( S  e.  V  /\  { ( lastS  `  T ) ,  S }  e.  ran  E ) ) )  ->  (
i  e.  ( 0..^ N )  ->  { ( T `  i ) ,  ( T `  ( i  +  1 ) ) }  =  { ( ( T ++ 
<" S "> ) `  i ) ,  ( ( T ++ 
<" S "> ) `  ( i  +  1 ) ) } ) )
4948imp 430 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( T  e. Word  V  /\  ( # `  T
)  =  ( N  +  1 ) )  /\  ( N  e. 
NN0  /\  ( S  e.  V  /\  { ( lastS  `  T ) ,  S }  e.  ran  E ) ) )  /\  i  e.  ( 0..^ N ) )  ->  { ( T `  i ) ,  ( T `  ( i  +  1 ) ) }  =  { ( ( T ++ 
<" S "> ) `  i ) ,  ( ( T ++ 
<" S "> ) `  ( i  +  1 ) ) } )
5049eleq1d 2491 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( T  e. Word  V  /\  ( # `  T
)  =  ( N  +  1 ) )  /\  ( N  e. 
NN0  /\  ( S  e.  V  /\  { ( lastS  `  T ) ,  S }  e.  ran  E ) ) )  /\  i  e.  ( 0..^ N ) )  ->  ( {
( T `  i
) ,  ( T `
 ( i  +  1 ) ) }  e.  ran  E  <->  { (
( T ++  <" S "> ) `  i
) ,  ( ( T ++  <" S "> ) `  ( i  +  1 ) ) }  e.  ran  E
) )
5150ralbidva 2861 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( T  e. Word  V  /\  ( # `  T
)  =  ( N  +  1 ) )  /\  ( N  e. 
NN0  /\  ( S  e.  V  /\  { ( lastS  `  T ) ,  S }  e.  ran  E ) ) )  ->  ( A. i  e.  (
0..^ N ) { ( T `  i
) ,  ( T `
 ( i  +  1 ) ) }  e.  ran  E  <->  A. i  e.  ( 0..^ N ) { ( ( T ++ 
<" S "> ) `  i ) ,  ( ( T ++ 
<" S "> ) `  ( i  +  1 ) ) }  e.  ran  E
) )
5251biimpd 210 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( T  e. Word  V  /\  ( # `  T
)  =  ( N  +  1 ) )  /\  ( N  e. 
NN0  /\  ( S  e.  V  /\  { ( lastS  `  T ) ,  S }  e.  ran  E ) ) )  ->  ( A. i  e.  (
0..^ N ) { ( T `  i
) ,  ( T `
 ( i  +  1 ) ) }  e.  ran  E  ->  A. i  e.  (
0..^ N ) { ( ( T ++  <" S "> ) `  i ) ,  ( ( T ++  <" S "> ) `  (
i  +  1 ) ) }  e.  ran  E ) )
5352ex 435 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( T  e. Word  V  /\  ( # `  T )  =  ( N  + 
1 ) )  -> 
( ( N  e. 
NN0  /\  ( S  e.  V  /\  { ( lastS  `  T ) ,  S }  e.  ran  E ) )  ->  ( A. i  e.  ( 0..^ N ) { ( T `  i ) ,  ( T `  ( i  +  1 ) ) }  e.  ran  E  ->  A. i  e.  ( 0..^ N ) { ( ( T ++ 
<" S "> ) `  i ) ,  ( ( T ++ 
<" S "> ) `  ( i  +  1 ) ) }  e.  ran  E
) ) )
5453com23 81 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( T  e. Word  V  /\  ( # `  T )  =  ( N  + 
1 ) )  -> 
( A. i  e.  ( 0..^ N ) { ( T `  i ) ,  ( T `  ( i  +  1 ) ) }  e.  ran  E  ->  ( ( N  e. 
NN0  /\  ( S  e.  V  /\  { ( lastS  `  T ) ,  S }  e.  ran  E ) )  ->  A. i  e.  ( 0..^ N ) { ( ( T ++ 
<" S "> ) `  i ) ,  ( ( T ++ 
<" S "> ) `  ( i  +  1 ) ) }  e.  ran  E
) ) )
55543impia 1202 . . . . . . . . . . . . . . . . . . 19  |-  ( ( T  e. Word  V  /\  ( # `  T )  =  ( N  + 
1 )  /\  A. i  e.  ( 0..^ N ) { ( T `  i ) ,  ( T `  ( i  +  1 ) ) }  e.  ran  E )  ->  (
( N  e.  NN0  /\  ( S  e.  V  /\  { ( lastS  `  T
) ,  S }  e.  ran  E ) )  ->  A. i  e.  ( 0..^ N ) { ( ( T ++  <" S "> ) `  i ) ,  ( ( T ++  <" S "> ) `  (
i  +  1 ) ) }  e.  ran  E ) )
5655imp 430 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( T  e. Word  V  /\  ( # `  T
)  =  ( N  +  1 )  /\  A. i  e.  ( 0..^ N ) { ( T `  i ) ,  ( T `  ( i  +  1 ) ) }  e.  ran  E )  /\  ( N  e.  NN0  /\  ( S  e.  V  /\  { ( lastS  `  T ) ,  S }  e.  ran  E ) ) )  ->  A. i  e.  (
0..^ N ) { ( ( T ++  <" S "> ) `  i ) ,  ( ( T ++  <" S "> ) `  (
i  +  1 ) ) }  e.  ran  E )
57 oveq1 6308 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( (
# `  T )  =  ( N  + 
1 )  ->  (
( # `  T )  -  1 )  =  ( ( N  + 
1 )  -  1 ) )
5857ad2antll 733 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( S  e.  V  /\  N  e.  NN0 )  /\  ( T  e. Word  V  /\  ( # `  T
)  =  ( N  +  1 ) ) )  ->  ( ( # `
 T )  - 
1 )  =  ( ( N  +  1 )  -  1 ) )
59 nn0cn 10879 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( N  e.  NN0  ->  N  e.  CC )
60 ax-1cn 9597 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  1  e.  CC
61 pncan 9881 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  + 
1 )  -  1 )  =  N )
6259, 60, 61sylancl 666 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( N  e.  NN0  ->  ( ( N  +  1 )  -  1 )  =  N )
6362ad2antlr 731 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( S  e.  V  /\  N  e.  NN0 )  /\  ( T  e. Word  V  /\  ( # `  T
)  =  ( N  +  1 ) ) )  ->  ( ( N  +  1 )  -  1 )  =  N )
6458, 63eqtrd 2463 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( S  e.  V  /\  N  e.  NN0 )  /\  ( T  e. Word  V  /\  ( # `  T
)  =  ( N  +  1 ) ) )  ->  ( ( # `
 T )  - 
1 )  =  N )
6564fveq2d 5881 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( S  e.  V  /\  N  e.  NN0 )  /\  ( T  e. Word  V  /\  ( # `  T
)  =  ( N  +  1 ) ) )  ->  ( T `  ( ( # `  T
)  -  1 ) )  =  ( T `
 N ) )
66 lsw 12703 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( T  e. Word  V  ->  ( lastS  `  T )  =  ( T `  ( (
# `  T )  -  1 ) ) )
6766ad2antrl 732 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( S  e.  V  /\  N  e.  NN0 )  /\  ( T  e. Word  V  /\  ( # `  T
)  =  ( N  +  1 ) ) )  ->  ( lastS  `  T
)  =  ( T `
 ( ( # `  T )  -  1 ) ) )
68 simprl 762 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( S  e.  V  /\  N  e.  NN0 )  /\  ( T  e. Word  V  /\  ( # `  T
)  =  ( N  +  1 ) ) )  ->  T  e. Word  V )
69 fzonn0p1 11989 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( N  e.  NN0  ->  N  e.  ( 0..^ ( N  +  1 ) ) )
7069ad2antlr 731 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( S  e.  V  /\  N  e.  NN0 )  /\  ( T  e. Word  V  /\  ( # `  T
)  =  ( N  +  1 ) ) )  ->  N  e.  ( 0..^ ( N  + 
1 ) ) )
7128eleq2d 2492 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( (
# `  T )  =  ( N  + 
1 )  ->  ( N  e.  ( 0..^ ( # `  T
) )  <->  N  e.  ( 0..^ ( N  + 
1 ) ) ) )
7271ad2antll 733 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( S  e.  V  /\  N  e.  NN0 )  /\  ( T  e. Word  V  /\  ( # `  T
)  =  ( N  +  1 ) ) )  ->  ( N  e.  ( 0..^ ( # `  T ) )  <->  N  e.  ( 0..^ ( N  + 
1 ) ) ) )
7370, 72mpbird 235 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( S  e.  V  /\  N  e.  NN0 )  /\  ( T  e. Word  V  /\  ( # `  T
)  =  ( N  +  1 ) ) )  ->  N  e.  ( 0..^ ( # `  T
) ) )
74 ccats1val1 12749 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( T  e. Word  V  /\  S  e.  V  /\  N  e.  ( 0..^ ( # `  T
) ) )  -> 
( ( T ++  <" S "> ) `  N )  =  ( T `  N ) )
7568, 22, 73, 74syl3anc 1264 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( S  e.  V  /\  N  e.  NN0 )  /\  ( T  e. Word  V  /\  ( # `  T
)  =  ( N  +  1 ) ) )  ->  ( ( T ++  <" S "> ) `  N )  =  ( T `  N ) )
7665, 67, 753eqtr4d 2473 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( S  e.  V  /\  N  e.  NN0 )  /\  ( T  e. Word  V  /\  ( # `  T
)  =  ( N  +  1 ) ) )  ->  ( lastS  `  T
)  =  ( ( T ++  <" S "> ) `  N ) )
77 simpr 462 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( T  e. Word  V  /\  ( # `  T )  =  ( N  + 
1 ) )  -> 
( # `  T )  =  ( N  + 
1 ) )
7877eqcomd 2430 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( T  e. Word  V  /\  ( # `  T )  =  ( N  + 
1 ) )  -> 
( N  +  1 )  =  ( # `  T ) )
7978adantl 467 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( S  e.  V  /\  N  e.  NN0 )  /\  ( T  e. Word  V  /\  ( # `  T
)  =  ( N  +  1 ) ) )  ->  ( N  +  1 )  =  ( # `  T
) )
80 ccats1val2 12750 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( T  e. Word  V  /\  S  e.  V  /\  ( N  +  1
)  =  ( # `  T ) )  -> 
( ( T ++  <" S "> ) `  ( N  +  1 ) )  =  S )
8168, 22, 79, 80syl3anc 1264 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( S  e.  V  /\  N  e.  NN0 )  /\  ( T  e. Word  V  /\  ( # `  T
)  =  ( N  +  1 ) ) )  ->  ( ( T ++  <" S "> ) `  ( N  +  1 ) )  =  S )
8281eqcomd 2430 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( S  e.  V  /\  N  e.  NN0 )  /\  ( T  e. Word  V  /\  ( # `  T
)  =  ( N  +  1 ) ) )  ->  S  =  ( ( T ++  <" S "> ) `  ( N  +  1 ) ) )
8376, 82preq12d 4084 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( S  e.  V  /\  N  e.  NN0 )  /\  ( T  e. Word  V  /\  ( # `  T
)  =  ( N  +  1 ) ) )  ->  { ( lastS  `  T ) ,  S }  =  { (
( T ++  <" S "> ) `  N
) ,  ( ( T ++  <" S "> ) `  ( N  +  1 ) ) } )
8483eleq1d 2491 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( S  e.  V  /\  N  e.  NN0 )  /\  ( T  e. Word  V  /\  ( # `  T
)  =  ( N  +  1 ) ) )  ->  ( {
( lastS  `  T ) ,  S }  e.  ran  E  <->  { ( ( T ++ 
<" S "> ) `  N ) ,  ( ( T ++ 
<" S "> ) `  ( N  +  1 ) ) }  e.  ran  E
) )
8584biimpcd 227 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( { ( lastS  `  T ) ,  S }  e.  ran  E  ->  ( ( ( S  e.  V  /\  N  e.  NN0 )  /\  ( T  e. Word  V  /\  ( # `  T )  =  ( N  + 
1 ) ) )  ->  { ( ( T ++  <" S "> ) `  N ) ,  ( ( T ++ 
<" S "> ) `  ( N  +  1 ) ) }  e.  ran  E
) )
8685exp4c 611 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( { ( lastS  `  T ) ,  S }  e.  ran  E  ->  ( S  e.  V  ->  ( N  e.  NN0  ->  ( ( T  e. Word  V  /\  ( # `
 T )  =  ( N  +  1 ) )  ->  { ( ( T ++  <" S "> ) `  N
) ,  ( ( T ++  <" S "> ) `  ( N  +  1 ) ) }  e.  ran  E
) ) ) )
8786impcom 431 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( S  e.  V  /\  { ( lastS  `  T ) ,  S }  e.  ran  E )  ->  ( N  e.  NN0  ->  ( ( T  e. Word  V  /\  ( # `
 T )  =  ( N  +  1 ) )  ->  { ( ( T ++  <" S "> ) `  N
) ,  ( ( T ++  <" S "> ) `  ( N  +  1 ) ) }  e.  ran  E
) ) )
8887impcom 431 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( N  e.  NN0  /\  ( S  e.  V  /\  { ( lastS  `  T
) ,  S }  e.  ran  E ) )  ->  ( ( T  e. Word  V  /\  ( # `
 T )  =  ( N  +  1 ) )  ->  { ( ( T ++  <" S "> ) `  N
) ,  ( ( T ++  <" S "> ) `  ( N  +  1 ) ) }  e.  ran  E
) )
8988com12 32 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( T  e. Word  V  /\  ( # `  T )  =  ( N  + 
1 ) )  -> 
( ( N  e. 
NN0  /\  ( S  e.  V  /\  { ( lastS  `  T ) ,  S }  e.  ran  E ) )  ->  { (
( T ++  <" S "> ) `  N
) ,  ( ( T ++  <" S "> ) `  ( N  +  1 ) ) }  e.  ran  E
) )
90893adant3 1025 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( T  e. Word  V  /\  ( # `  T )  =  ( N  + 
1 )  /\  A. i  e.  ( 0..^ N ) { ( T `  i ) ,  ( T `  ( i  +  1 ) ) }  e.  ran  E )  ->  (
( N  e.  NN0  /\  ( S  e.  V  /\  { ( lastS  `  T
) ,  S }  e.  ran  E ) )  ->  { ( ( T ++  <" S "> ) `  N ) ,  ( ( T ++ 
<" S "> ) `  ( N  +  1 ) ) }  e.  ran  E
) )
9190imp 430 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( T  e. Word  V  /\  ( # `  T
)  =  ( N  +  1 )  /\  A. i  e.  ( 0..^ N ) { ( T `  i ) ,  ( T `  ( i  +  1 ) ) }  e.  ran  E )  /\  ( N  e.  NN0  /\  ( S  e.  V  /\  { ( lastS  `  T ) ,  S }  e.  ran  E ) ) )  ->  { ( ( T ++ 
<" S "> ) `  N ) ,  ( ( T ++ 
<" S "> ) `  ( N  +  1 ) ) }  e.  ran  E
)
92 fveq2 5877 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( i  =  N  ->  (
( T ++  <" S "> ) `  i
)  =  ( ( T ++  <" S "> ) `  N ) )
93 oveq1 6308 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( i  =  N  ->  (
i  +  1 )  =  ( N  + 
1 ) )
9493fveq2d 5881 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( i  =  N  ->  (
( T ++  <" S "> ) `  (
i  +  1 ) )  =  ( ( T ++  <" S "> ) `  ( N  +  1 ) ) )
9592, 94preq12d 4084 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( i  =  N  ->  { ( ( T ++  <" S "> ) `  i
) ,  ( ( T ++  <" S "> ) `  ( i  +  1 ) ) }  =  { ( ( T ++  <" S "> ) `  N
) ,  ( ( T ++  <" S "> ) `  ( N  +  1 ) ) } )
9695eleq1d 2491 . . . . . . . . . . . . . . . . . . . . 21  |-  ( i  =  N  ->  ( { ( ( T ++ 
<" S "> ) `  i ) ,  ( ( T ++ 
<" S "> ) `  ( i  +  1 ) ) }  e.  ran  E  <->  { ( ( T ++  <" S "> ) `  N ) ,  ( ( T ++  <" S "> ) `  ( N  +  1 ) ) }  e.  ran  E ) )
9796ralsng 4031 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  NN0  ->  ( A. i  e.  { N }  { ( ( T ++ 
<" S "> ) `  i ) ,  ( ( T ++ 
<" S "> ) `  ( i  +  1 ) ) }  e.  ran  E  <->  { ( ( T ++  <" S "> ) `  N ) ,  ( ( T ++  <" S "> ) `  ( N  +  1 ) ) }  e.  ran  E ) )
9897ad2antrl 732 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( T  e. Word  V  /\  ( # `  T
)  =  ( N  +  1 )  /\  A. i  e.  ( 0..^ N ) { ( T `  i ) ,  ( T `  ( i  +  1 ) ) }  e.  ran  E )  /\  ( N  e.  NN0  /\  ( S  e.  V  /\  { ( lastS  `  T ) ,  S }  e.  ran  E ) ) )  -> 
( A. i  e. 
{ N }  {
( ( T ++  <" S "> ) `  i ) ,  ( ( T ++  <" S "> ) `  (
i  +  1 ) ) }  e.  ran  E  <->  { ( ( T ++ 
<" S "> ) `  N ) ,  ( ( T ++ 
<" S "> ) `  ( N  +  1 ) ) }  e.  ran  E
) )
9991, 98mpbird 235 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( T  e. Word  V  /\  ( # `  T
)  =  ( N  +  1 )  /\  A. i  e.  ( 0..^ N ) { ( T `  i ) ,  ( T `  ( i  +  1 ) ) }  e.  ran  E )  /\  ( N  e.  NN0  /\  ( S  e.  V  /\  { ( lastS  `  T ) ,  S }  e.  ran  E ) ) )  ->  A. i  e.  { N }  { ( ( T ++ 
<" S "> ) `  i ) ,  ( ( T ++ 
<" S "> ) `  ( i  +  1 ) ) }  e.  ran  E
)
100 ralunb 3647 . . . . . . . . . . . . . . . . . 18  |-  ( A. i  e.  ( (
0..^ N )  u. 
{ N } ) { ( ( T ++ 
<" S "> ) `  i ) ,  ( ( T ++ 
<" S "> ) `  ( i  +  1 ) ) }  e.  ran  E  <->  ( A. i  e.  ( 0..^ N ) { ( ( T ++  <" S "> ) `  i ) ,  ( ( T ++  <" S "> ) `  (
i  +  1 ) ) }  e.  ran  E  /\  A. i  e. 
{ N }  {
( ( T ++  <" S "> ) `  i ) ,  ( ( T ++  <" S "> ) `  (
i  +  1 ) ) }  e.  ran  E ) )
10156, 99, 100sylanbrc 668 . . . . . . . . . . . . . . . . 17  |-  ( ( ( T  e. Word  V  /\  ( # `  T
)  =  ( N  +  1 )  /\  A. i  e.  ( 0..^ N ) { ( T `  i ) ,  ( T `  ( i  +  1 ) ) }  e.  ran  E )  /\  ( N  e.  NN0  /\  ( S  e.  V  /\  { ( lastS  `  T ) ,  S }  e.  ran  E ) ) )  ->  A. i  e.  (
( 0..^ N )  u.  { N }
) { ( ( T ++  <" S "> ) `  i ) ,  ( ( T ++ 
<" S "> ) `  ( i  +  1 ) ) }  e.  ran  E
)
102 elnn0uz 11196 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( N  e.  NN0  <->  N  e.  ( ZZ>=
`  0 ) )
103 eluzfz2 11807 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( N  e.  ( ZZ>= `  0
)  ->  N  e.  ( 0 ... N
) )
104102, 103sylbi 198 . . . . . . . . . . . . . . . . . . . . 21  |-  ( N  e.  NN0  ->  N  e.  ( 0 ... N
) )
105 fzelp1 11848 . . . . . . . . . . . . . . . . . . . . 21  |-  ( N  e.  ( 0 ... N )  ->  N  e.  ( 0 ... ( N  +  1 ) ) )
106 fzosplit 11951 . . . . . . . . . . . . . . . . . . . . 21  |-  ( N  e.  ( 0 ... ( N  +  1 ) )  ->  (
0..^ ( N  + 
1 ) )  =  ( ( 0..^ N )  u.  ( N..^ ( N  +  1 ) ) ) )
107104, 105, 1063syl 18 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  NN0  ->  ( 0..^ ( N  +  1 ) )  =  ( ( 0..^ N )  u.  ( N..^ ( N  +  1 ) ) ) )
108 nn0z 10960 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( N  e.  NN0  ->  N  e.  ZZ )
109 fzosn 11983 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( N  e.  ZZ  ->  ( N..^ ( N  +  1 ) )  =  { N } )
110108, 109syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( N  e.  NN0  ->  ( N..^ ( N  +  1 ) )  =  { N } )
111110uneq2d 3620 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  NN0  ->  ( ( 0..^ N )  u.  ( N..^ ( N  +  1 ) ) )  =  ( ( 0..^ N )  u. 
{ N } ) )
112107, 111eqtrd 2463 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  NN0  ->  ( 0..^ ( N  +  1 ) )  =  ( ( 0..^ N )  u.  { N }
) )
113112ad2antrl 732 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( T  e. Word  V  /\  ( # `  T
)  =  ( N  +  1 )  /\  A. i  e.  ( 0..^ N ) { ( T `  i ) ,  ( T `  ( i  +  1 ) ) }  e.  ran  E )  /\  ( N  e.  NN0  /\  ( S  e.  V  /\  { ( lastS  `  T ) ,  S }  e.  ran  E ) ) )  -> 
( 0..^ ( N  +  1 ) )  =  ( ( 0..^ N )  u.  { N } ) )
114113raleqdv 3031 . . . . . . . . . . . . . . . . 17  |-  ( ( ( T  e. Word  V  /\  ( # `  T
)  =  ( N  +  1 )  /\  A. i  e.  ( 0..^ N ) { ( T `  i ) ,  ( T `  ( i  +  1 ) ) }  e.  ran  E )  /\  ( N  e.  NN0  /\  ( S  e.  V  /\  { ( lastS  `  T ) ,  S }  e.  ran  E ) ) )  -> 
( A. i  e.  ( 0..^ ( N  +  1 ) ) { ( ( T ++ 
<" S "> ) `  i ) ,  ( ( T ++ 
<" S "> ) `  ( i  +  1 ) ) }  e.  ran  E  <->  A. i  e.  ( ( 0..^ N )  u. 
{ N } ) { ( ( T ++ 
<" S "> ) `  i ) ,  ( ( T ++ 
<" S "> ) `  ( i  +  1 ) ) }  e.  ran  E
) )
115101, 114mpbird 235 . . . . . . . . . . . . . . . 16  |-  ( ( ( T  e. Word  V  /\  ( # `  T
)  =  ( N  +  1 )  /\  A. i  e.  ( 0..^ N ) { ( T `  i ) ,  ( T `  ( i  +  1 ) ) }  e.  ran  E )  /\  ( N  e.  NN0  /\  ( S  e.  V  /\  { ( lastS  `  T ) ,  S }  e.  ran  E ) ) )  ->  A. i  e.  (
0..^ ( N  + 
1 ) ) { ( ( T ++  <" S "> ) `  i ) ,  ( ( T ++  <" S "> ) `  (
i  +  1 ) ) }  e.  ran  E )
116 ccatlen 12713 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( T  e. Word  V  /\  <" S ">  e. Word  V )  ->  ( # `
 ( T ++  <" S "> )
)  =  ( (
# `  T )  +  ( # `  <" S "> )
) )
1173, 18, 116syl2an 479 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( T  e. Word  V  /\  ( # `  T
)  =  ( N  +  1 )  /\  A. i  e.  ( 0..^ N ) { ( T `  i ) ,  ( T `  ( i  +  1 ) ) }  e.  ran  E )  /\  ( N  e.  NN0  /\  ( S  e.  V  /\  { ( lastS  `  T ) ,  S }  e.  ran  E ) ) )  -> 
( # `  ( T ++ 
<" S "> ) )  =  ( ( # `  T
)  +  ( # `  <" S "> ) ) )
118117oveq1d 6316 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( T  e. Word  V  /\  ( # `  T
)  =  ( N  +  1 )  /\  A. i  e.  ( 0..^ N ) { ( T `  i ) ,  ( T `  ( i  +  1 ) ) }  e.  ran  E )  /\  ( N  e.  NN0  /\  ( S  e.  V  /\  { ( lastS  `  T ) ,  S }  e.  ran  E ) ) )  -> 
( ( # `  ( T ++  <" S "> ) )  -  1 )  =  ( ( ( # `  T
)  +  ( # `  <" S "> ) )  -  1 ) )
119 simpl2 1009 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( T  e. Word  V  /\  ( # `  T
)  =  ( N  +  1 )  /\  A. i  e.  ( 0..^ N ) { ( T `  i ) ,  ( T `  ( i  +  1 ) ) }  e.  ran  E )  /\  ( N  e.  NN0  /\  ( S  e.  V  /\  { ( lastS  `  T ) ,  S }  e.  ran  E ) ) )  -> 
( # `  T )  =  ( N  + 
1 ) )
120 s1len 12736 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( # `  <" S "> )  =  1
121120a1i 11 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( T  e. Word  V  /\  ( # `  T
)  =  ( N  +  1 )  /\  A. i  e.  ( 0..^ N ) { ( T `  i ) ,  ( T `  ( i  +  1 ) ) }  e.  ran  E )  /\  ( N  e.  NN0  /\  ( S  e.  V  /\  { ( lastS  `  T ) ,  S }  e.  ran  E ) ) )  -> 
( # `  <" S "> )  =  1 )
122119, 121oveq12d 6319 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( T  e. Word  V  /\  ( # `  T
)  =  ( N  +  1 )  /\  A. i  e.  ( 0..^ N ) { ( T `  i ) ,  ( T `  ( i  +  1 ) ) }  e.  ran  E )  /\  ( N  e.  NN0  /\  ( S  e.  V  /\  { ( lastS  `  T ) ,  S }  e.  ran  E ) ) )  -> 
( ( # `  T
)  +  ( # `  <" S "> ) )  =  ( ( N  +  1 )  +  1 ) )
123122oveq1d 6316 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( T  e. Word  V  /\  ( # `  T
)  =  ( N  +  1 )  /\  A. i  e.  ( 0..^ N ) { ( T `  i ) ,  ( T `  ( i  +  1 ) ) }  e.  ran  E )  /\  ( N  e.  NN0  /\  ( S  e.  V  /\  { ( lastS  `  T ) ,  S }  e.  ran  E ) ) )  -> 
( ( ( # `  T )  +  (
# `  <" S "> ) )  - 
1 )  =  ( ( ( N  + 
1 )  +  1 )  -  1 ) )
124 peano2nn0 10910 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( N  e.  NN0  ->  ( N  +  1 )  e. 
NN0 )
125124nn0cnd 10927 . . . . . . . . . . . . . . . . . . . . 21  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  CC )
126 pncan 9881 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( N  +  1 )  e.  CC  /\  1  e.  CC )  ->  ( ( ( N  +  1 )  +  1 )  -  1 )  =  ( N  +  1 ) )
127125, 60, 126sylancl 666 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  NN0  ->  ( ( ( N  +  1 )  +  1 )  -  1 )  =  ( N  +  1 ) )
128127ad2antrl 732 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( T  e. Word  V  /\  ( # `  T
)  =  ( N  +  1 )  /\  A. i  e.  ( 0..^ N ) { ( T `  i ) ,  ( T `  ( i  +  1 ) ) }  e.  ran  E )  /\  ( N  e.  NN0  /\  ( S  e.  V  /\  { ( lastS  `  T ) ,  S }  e.  ran  E ) ) )  -> 
( ( ( N  +  1 )  +  1 )  -  1 )  =  ( N  +  1 ) )
129118, 123, 1283eqtrd 2467 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( T  e. Word  V  /\  ( # `  T
)  =  ( N  +  1 )  /\  A. i  e.  ( 0..^ N ) { ( T `  i ) ,  ( T `  ( i  +  1 ) ) }  e.  ran  E )  /\  ( N  e.  NN0  /\  ( S  e.  V  /\  { ( lastS  `  T ) ,  S }  e.  ran  E ) ) )  -> 
( ( # `  ( T ++  <" S "> ) )  -  1 )  =  ( N  +  1 ) )
130129oveq2d 6317 . . . . . . . . . . . . . . . . 17  |-  ( ( ( T  e. Word  V  /\  ( # `  T
)  =  ( N  +  1 )  /\  A. i  e.  ( 0..^ N ) { ( T `  i ) ,  ( T `  ( i  +  1 ) ) }  e.  ran  E )  /\  ( N  e.  NN0  /\  ( S  e.  V  /\  { ( lastS  `  T ) ,  S }  e.  ran  E ) ) )  -> 
( 0..^ ( (
# `  ( T ++  <" S "> ) )  -  1 ) )  =  ( 0..^ ( N  + 
1 ) ) )
131130raleqdv 3031 . . . . . . . . . . . . . . . 16  |-  ( ( ( T  e. Word  V  /\  ( # `  T
)  =  ( N  +  1 )  /\  A. i  e.  ( 0..^ N ) { ( T `  i ) ,  ( T `  ( i  +  1 ) ) }  e.  ran  E )  /\  ( N  e.  NN0  /\  ( S  e.  V  /\  { ( lastS  `  T ) ,  S }  e.  ran  E ) ) )  -> 
( A. i  e.  ( 0..^ ( (
# `  ( T ++  <" S "> ) )  -  1 ) ) { ( ( T ++  <" S "> ) `  i
) ,  ( ( T ++  <" S "> ) `  ( i  +  1 ) ) }  e.  ran  E  <->  A. i  e.  ( 0..^ ( N  +  1 ) ) { ( ( T ++  <" S "> ) `  i
) ,  ( ( T ++  <" S "> ) `  ( i  +  1 ) ) }  e.  ran  E
) )
132115, 131mpbird 235 . . . . . . . . . . . . . . 15  |-  ( ( ( T  e. Word  V  /\  ( # `  T
)  =  ( N  +  1 )  /\  A. i  e.  ( 0..^ N ) { ( T `  i ) ,  ( T `  ( i  +  1 ) ) }  e.  ran  E )  /\  ( N  e.  NN0  /\  ( S  e.  V  /\  { ( lastS  `  T ) ,  S }  e.  ran  E ) ) )  ->  A. i  e.  (
0..^ ( ( # `  ( T ++  <" S "> ) )  - 
1 ) ) { ( ( T ++  <" S "> ) `  i ) ,  ( ( T ++  <" S "> ) `  (
i  +  1 ) ) }  e.  ran  E )
13316, 20, 1323jca 1185 . . . . . . . . . . . . . 14  |-  ( ( ( T  e. Word  V  /\  ( # `  T
)  =  ( N  +  1 )  /\  A. i  e.  ( 0..^ N ) { ( T `  i ) ,  ( T `  ( i  +  1 ) ) }  e.  ran  E )  /\  ( N  e.  NN0  /\  ( S  e.  V  /\  { ( lastS  `  T ) ,  S }  e.  ran  E ) ) )  -> 
( ( T ++  <" S "> )  =/=  (/)  /\  ( T ++ 
<" S "> )  e. Word  V  /\  A. i  e.  ( 0..^ ( ( # `  ( T ++  <" S "> ) )  -  1 ) ) { ( ( T ++  <" S "> ) `  i
) ,  ( ( T ++  <" S "> ) `  ( i  +  1 ) ) }  e.  ran  E
) )
134117, 122eqtrd 2463 . . . . . . . . . . . . . 14  |-  ( ( ( T  e. Word  V  /\  ( # `  T
)  =  ( N  +  1 )  /\  A. i  e.  ( 0..^ N ) { ( T `  i ) ,  ( T `  ( i  +  1 ) ) }  e.  ran  E )  /\  ( N  e.  NN0  /\  ( S  e.  V  /\  { ( lastS  `  T ) ,  S }  e.  ran  E ) ) )  -> 
( # `  ( T ++ 
<" S "> ) )  =  ( ( N  +  1 )  +  1 ) )
135133, 134jca 534 . . . . . . . . . . . . 13  |-  ( ( ( T  e. Word  V  /\  ( # `  T
)  =  ( N  +  1 )  /\  A. i  e.  ( 0..^ N ) { ( T `  i ) ,  ( T `  ( i  +  1 ) ) }  e.  ran  E )  /\  ( N  e.  NN0  /\  ( S  e.  V  /\  { ( lastS  `  T ) ,  S }  e.  ran  E ) ) )  -> 
( ( ( T ++ 
<" S "> )  =/=  (/)  /\  ( T ++ 
<" S "> )  e. Word  V  /\  A. i  e.  ( 0..^ ( ( # `  ( T ++  <" S "> ) )  -  1 ) ) { ( ( T ++  <" S "> ) `  i
) ,  ( ( T ++  <" S "> ) `  ( i  +  1 ) ) }  e.  ran  E
)  /\  ( # `  ( T ++  <" S "> ) )  =  ( ( N  +  1 )  +  1 ) ) )
136135ex 435 . . . . . . . . . . . 12  |-  ( ( T  e. Word  V  /\  ( # `  T )  =  ( N  + 
1 )  /\  A. i  e.  ( 0..^ N ) { ( T `  i ) ,  ( T `  ( i  +  1 ) ) }  e.  ran  E )  ->  (
( N  e.  NN0  /\  ( S  e.  V  /\  { ( lastS  `  T
) ,  S }  e.  ran  E ) )  ->  ( ( ( T ++  <" S "> )  =/=  (/)  /\  ( T ++  <" S "> )  e. Word  V  /\  A. i  e.  ( 0..^ ( ( # `  ( T ++  <" S "> ) )  -  1 ) ) { ( ( T ++  <" S "> ) `  i
) ,  ( ( T ++  <" S "> ) `  ( i  +  1 ) ) }  e.  ran  E
)  /\  ( # `  ( T ++  <" S "> ) )  =  ( ( N  +  1 )  +  1 ) ) ) )
1372, 136syl 17 . . . . . . . . . . 11  |-  ( T  e.  ( ( V WWalksN  E ) `  N
)  ->  ( ( N  e.  NN0  /\  ( S  e.  V  /\  { ( lastS  `  T ) ,  S }  e.  ran  E ) )  ->  (
( ( T ++  <" S "> )  =/=  (/)  /\  ( T ++ 
<" S "> )  e. Word  V  /\  A. i  e.  ( 0..^ ( ( # `  ( T ++  <" S "> ) )  -  1 ) ) { ( ( T ++  <" S "> ) `  i
) ,  ( ( T ++  <" S "> ) `  ( i  +  1 ) ) }  e.  ran  E
)  /\  ( # `  ( T ++  <" S "> ) )  =  ( ( N  +  1 )  +  1 ) ) ) )
138137expd 437 . . . . . . . . . 10  |-  ( T  e.  ( ( V WWalksN  E ) `  N
)  ->  ( N  e.  NN0  ->  ( ( S  e.  V  /\  { ( lastS  `  T ) ,  S }  e.  ran  E )  ->  ( (
( T ++  <" S "> )  =/=  (/)  /\  ( T ++  <" S "> )  e. Word  V  /\  A. i  e.  ( 0..^ ( ( # `  ( T ++  <" S "> ) )  -  1 ) ) { ( ( T ++  <" S "> ) `  i
) ,  ( ( T ++  <" S "> ) `  ( i  +  1 ) ) }  e.  ran  E
)  /\  ( # `  ( T ++  <" S "> ) )  =  ( ( N  +  1 )  +  1 ) ) ) ) )
139138com12 32 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( T  e.  ( ( V WWalksN  E ) `  N
)  ->  ( ( S  e.  V  /\  { ( lastS  `  T ) ,  S }  e.  ran  E )  ->  ( (
( T ++  <" S "> )  =/=  (/)  /\  ( T ++  <" S "> )  e. Word  V  /\  A. i  e.  ( 0..^ ( ( # `  ( T ++  <" S "> ) )  -  1 ) ) { ( ( T ++  <" S "> ) `  i
) ,  ( ( T ++  <" S "> ) `  ( i  +  1 ) ) }  e.  ran  E
)  /\  ( # `  ( T ++  <" S "> ) )  =  ( ( N  +  1 )  +  1 ) ) ) ) )
1401393ad2ant3 1028 . . . . . . . 8  |-  ( ( V  e.  _V  /\  E  e.  _V  /\  N  e.  NN0 )  ->  ( T  e.  ( ( V WWalksN  E ) `  N
)  ->  ( ( S  e.  V  /\  { ( lastS  `  T ) ,  S }  e.  ran  E )  ->  ( (
( T ++  <" S "> )  =/=  (/)  /\  ( T ++  <" S "> )  e. Word  V  /\  A. i  e.  ( 0..^ ( ( # `  ( T ++  <" S "> ) )  -  1 ) ) { ( ( T ++  <" S "> ) `  i
) ,  ( ( T ++  <" S "> ) `  ( i  +  1 ) ) }  e.  ran  E
)  /\  ( # `  ( T ++  <" S "> ) )  =  ( ( N  +  1 )  +  1 ) ) ) ) )
141140imp 430 . . . . . . 7  |-  ( ( ( V  e.  _V  /\  E  e.  _V  /\  N  e.  NN0 )  /\  T  e.  ( ( V WWalksN  E ) `  N
) )  ->  (
( S  e.  V  /\  { ( lastS  `  T
) ,  S }  e.  ran  E )  -> 
( ( ( T ++ 
<" S "> )  =/=  (/)  /\  ( T ++ 
<" S "> )  e. Word  V  /\  A. i  e.  ( 0..^ ( ( # `  ( T ++  <" S "> ) )  -  1 ) ) { ( ( T ++  <" S "> ) `  i
) ,  ( ( T ++  <" S "> ) `  ( i  +  1 ) ) }  e.  ran  E
)  /\  ( # `  ( T ++  <" S "> ) )  =  ( ( N  +  1 )  +  1 ) ) ) )
142 iswwlkn 25397 . . . . . . . . . 10  |-  ( ( V  e.  _V  /\  E  e.  _V  /\  ( N  +  1 )  e.  NN0 )  -> 
( ( T ++  <" S "> )  e.  ( ( V WWalksN  E
) `  ( N  +  1 ) )  <-> 
( ( T ++  <" S "> )  e.  ( V WWalks  E )  /\  ( # `  ( T ++  <" S "> ) )  =  ( ( N  +  1 )  +  1 ) ) ) )
143124, 142syl3an3 1299 . . . . . . . . 9  |-  ( ( V  e.  _V  /\  E  e.  _V  /\  N  e.  NN0 )  ->  (
( T ++  <" S "> )  e.  ( ( V WWalksN  E ) `  ( N  +  1 ) )  <->  ( ( T ++  <" S "> )  e.  ( V WWalks  E )  /\  ( # `
 ( T ++  <" S "> )
)  =  ( ( N  +  1 )  +  1 ) ) ) )
144 iswwlk 25396 . . . . . . . . . . 11  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  ( ( T ++  <" S "> )  e.  ( V WWalks  E )  <-> 
( ( T ++  <" S "> )  =/=  (/)  /\  ( T ++ 
<" S "> )  e. Word  V  /\  A. i  e.  ( 0..^ ( ( # `  ( T ++  <" S "> ) )  -  1 ) ) { ( ( T ++  <" S "> ) `  i
) ,  ( ( T ++  <" S "> ) `  ( i  +  1 ) ) }  e.  ran  E
) ) )
145144anbi1d 709 . . . . . . . . . 10  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  ( ( ( T ++ 
<" S "> )  e.  ( V WWalks  E )  /\  ( # `  ( T ++  <" S "> ) )  =  ( ( N  + 
1 )  +  1 ) )  <->  ( (
( T ++  <" S "> )  =/=  (/)  /\  ( T ++  <" S "> )  e. Word  V  /\  A. i  e.  ( 0..^ ( ( # `  ( T ++  <" S "> ) )  -  1 ) ) { ( ( T ++  <" S "> ) `  i
) ,  ( ( T ++  <" S "> ) `  ( i  +  1 ) ) }  e.  ran  E
)  /\  ( # `  ( T ++  <" S "> ) )  =  ( ( N  +  1 )  +  1 ) ) ) )
1461453adant3 1025 . . . . . . . . 9  |-  ( ( V  e.  _V  /\  E  e.  _V  /\  N  e.  NN0 )  ->  (
( ( T ++  <" S "> )  e.  ( V WWalks  E )  /\  ( # `  ( T ++  <" S "> ) )  =  ( ( N  +  1 )  +  1 ) )  <->  ( ( ( T ++  <" S "> )  =/=  (/)  /\  ( T ++  <" S "> )  e. Word  V  /\  A. i  e.  ( 0..^ ( ( # `  ( T ++  <" S "> ) )  -  1 ) ) { ( ( T ++  <" S "> ) `  i
) ,  ( ( T ++  <" S "> ) `  ( i  +  1 ) ) }  e.  ran  E
)  /\  ( # `  ( T ++  <" S "> ) )  =  ( ( N  +  1 )  +  1 ) ) ) )
147143, 146bitrd 256 . . . . . . . 8  |-  ( ( V  e.  _V  /\  E  e.  _V  /\  N  e.  NN0 )  ->  (
( T ++  <" S "> )  e.  ( ( V WWalksN  E ) `  ( N  +  1 ) )  <->  ( (
( T ++  <" S "> )  =/=  (/)  /\  ( T ++  <" S "> )  e. Word  V  /\  A. i  e.  ( 0..^ ( ( # `  ( T ++  <" S "> ) )  -  1 ) ) { ( ( T ++  <" S "> ) `  i
) ,  ( ( T ++  <" S "> ) `  ( i  +  1 ) ) }  e.  ran  E
)  /\  ( # `  ( T ++  <" S "> ) )  =  ( ( N  +  1 )  +  1 ) ) ) )
148147adantr 466 . . . . . . 7  |-  ( ( ( V  e.  _V  /\  E  e.  _V  /\  N  e.  NN0 )  /\  T  e.  ( ( V WWalksN  E ) `  N
) )  ->  (
( T ++  <" S "> )  e.  ( ( V WWalksN  E ) `  ( N  +  1 ) )  <->  ( (
( T ++  <" S "> )  =/=  (/)  /\  ( T ++  <" S "> )  e. Word  V  /\  A. i  e.  ( 0..^ ( ( # `  ( T ++  <" S "> ) )  -  1 ) ) { ( ( T ++  <" S "> ) `  i
) ,  ( ( T ++  <" S "> ) `  ( i  +  1 ) ) }  e.  ran  E
)  /\  ( # `  ( T ++  <" S "> ) )  =  ( ( N  +  1 )  +  1 ) ) ) )
149141, 148sylibrd 237 . . . . . 6  |-  ( ( ( V  e.  _V  /\  E  e.  _V  /\  N  e.  NN0 )  /\  T  e.  ( ( V WWalksN  E ) `  N
) )  ->  (
( S  e.  V  /\  { ( lastS  `  T
) ,  S }  e.  ran  E )  -> 
( T ++  <" S "> )  e.  ( ( V WWalksN  E ) `  ( N  +  1 ) ) ) )
150149ex 435 . . . . 5  |-  ( ( V  e.  _V  /\  E  e.  _V  /\  N  e.  NN0 )  ->  ( T  e.  ( ( V WWalksN  E ) `  N
)  ->  ( ( S  e.  V  /\  { ( lastS  `  T ) ,  S }  e.  ran  E )  ->  ( T ++  <" S "> )  e.  ( ( V WWalksN  E ) `  ( N  +  1 ) ) ) ) )
1511503expa 1205 . . . 4  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  N  e.  NN0 )  ->  ( T  e.  ( ( V WWalksN  E
) `  N )  ->  ( ( S  e.  V  /\  { ( lastS  `  T ) ,  S }  e.  ran  E )  ->  ( T ++  <" S "> )  e.  ( ( V WWalksN  E
) `  ( N  +  1 ) ) ) ) )
152151adantrr 721 . . 3  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( N  e.  NN0  /\  T  e. Word  V ) )  ->  ( T  e.  ( ( V WWalksN  E
) `  N )  ->  ( ( S  e.  V  /\  { ( lastS  `  T ) ,  S }  e.  ran  E )  ->  ( T ++  <" S "> )  e.  ( ( V WWalksN  E
) `  ( N  +  1 ) ) ) ) )
1531, 152mpcom 37 . 2  |-  ( T  e.  ( ( V WWalksN  E ) `  N
)  ->  ( ( S  e.  V  /\  { ( lastS  `  T ) ,  S }  e.  ran  E )  ->  ( T ++  <" S "> )  e.  ( ( V WWalksN  E ) `  ( N  +  1 ) ) ) )
1541533impib 1203 1  |-  ( ( T  e.  ( ( V WWalksN  E ) `  N
)  /\  S  e.  V  /\  { ( lastS  `  T
) ,  S }  e.  ran  E )  -> 
( T ++  <" S "> )  e.  ( ( V WWalksN  E ) `  ( N  +  1 ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1868    =/= wne 2618   A.wral 2775   _Vcvv 3081    u. cun 3434   (/)c0 3761   {csn 3996   {cpr 3998   <.cop 4002   ran crn 4850   ` cfv 5597  (class class class)co 6301   CCcc 9537   0cc0 9539   1c1 9540    + caddc 9542    - cmin 9860   NN0cn0 10869   ZZcz 10937   ZZ>=cuz 11159   ...cfz 11784  ..^cfzo 11915   #chash 12514  Word cword 12648   lastS clsw 12649   ++ cconcat 12650   <"cs1 12651   WWalks cwwlk 25390   WWalksN cwwlkn 25391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-rep 4533  ax-sep 4543  ax-nul 4551  ax-pow 4598  ax-pr 4656  ax-un 6593  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-nel 2621  df-ral 2780  df-rex 2781  df-reu 2782  df-rmo 2783  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-tp 4001  df-op 4003  df-uni 4217  df-int 4253  df-iun 4298  df-br 4421  df-opab 4480  df-mpt 4481  df-tr 4516  df-eprel 4760  df-id 4764  df-po 4770  df-so 4771  df-fr 4808  df-we 4810  df-xp 4855  df-rel 4856  df-cnv 4857  df-co 4858  df-dm 4859  df-rn 4860  df-res 4861  df-ima 4862  df-pred 5395  df-ord 5441  df-on 5442  df-lim 5443  df-suc 5444  df-iota 5561  df-fun 5599  df-fn 5600  df-f 5601  df-f1 5602  df-fo 5603  df-f1o 5604  df-fv 5605  df-riota 6263  df-ov 6304  df-oprab 6305  df-mpt2 6306  df-om 6703  df-1st 6803  df-2nd 6804  df-wrecs 7032  df-recs 7094  df-rdg 7132  df-1o 7186  df-oadd 7190  df-er 7367  df-map 7478  df-pm 7479  df-en 7574  df-dom 7575  df-sdom 7576  df-fin 7577  df-card 8374  df-cda 8598  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-nn 10610  df-2 10668  df-n0 10870  df-z 10938  df-uz 11160  df-fz 11785  df-fzo 11916  df-hash 12515  df-word 12656  df-lsw 12657  df-concat 12658  df-s1 12659  df-wwlk 25392  df-wwlkn 25393
This theorem is referenced by:  wwlknextbi  25438  wwlkextsur  25444
  Copyright terms: Public domain W3C validator