MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunfi Structured version   Unicode version

Theorem wunfi 9116
Description: A weak universe contains all finite sets with elements drawn from the universe. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wun0.1  |-  ( ph  ->  U  e. WUni )
wunfi.2  |-  ( ph  ->  A  C_  U )
wunfi.3  |-  ( ph  ->  A  e.  Fin )
Assertion
Ref Expression
wunfi  |-  ( ph  ->  A  e.  U )

Proof of Theorem wunfi
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wunfi.2 . 2  |-  ( ph  ->  A  C_  U )
2 wunfi.3 . . 3  |-  ( ph  ->  A  e.  Fin )
3 sseq1 3520 . . . . . 6  |-  ( x  =  (/)  ->  ( x 
C_  U  <->  (/)  C_  U
) )
4 eleq1 2529 . . . . . 6  |-  ( x  =  (/)  ->  ( x  e.  U  <->  (/)  e.  U
) )
53, 4imbi12d 320 . . . . 5  |-  ( x  =  (/)  ->  ( ( x  C_  U  ->  x  e.  U )  <->  ( (/)  C_  U  -> 
(/)  e.  U )
) )
65imbi2d 316 . . . 4  |-  ( x  =  (/)  ->  ( (
ph  ->  ( x  C_  U  ->  x  e.  U
) )  <->  ( ph  ->  ( (/)  C_  U  ->  (/) 
e.  U ) ) ) )
7 sseq1 3520 . . . . . 6  |-  ( x  =  y  ->  (
x  C_  U  <->  y  C_  U ) )
8 eleq1 2529 . . . . . 6  |-  ( x  =  y  ->  (
x  e.  U  <->  y  e.  U ) )
97, 8imbi12d 320 . . . . 5  |-  ( x  =  y  ->  (
( x  C_  U  ->  x  e.  U )  <-> 
( y  C_  U  ->  y  e.  U ) ) )
109imbi2d 316 . . . 4  |-  ( x  =  y  ->  (
( ph  ->  ( x 
C_  U  ->  x  e.  U ) )  <->  ( ph  ->  ( y  C_  U  ->  y  e.  U ) ) ) )
11 sseq1 3520 . . . . . 6  |-  ( x  =  ( y  u. 
{ z } )  ->  ( x  C_  U 
<->  ( y  u.  {
z } )  C_  U ) )
12 eleq1 2529 . . . . . 6  |-  ( x  =  ( y  u. 
{ z } )  ->  ( x  e.  U  <->  ( y  u. 
{ z } )  e.  U ) )
1311, 12imbi12d 320 . . . . 5  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ( x 
C_  U  ->  x  e.  U )  <->  ( (
y  u.  { z } )  C_  U  ->  ( y  u.  {
z } )  e.  U ) ) )
1413imbi2d 316 . . . 4  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ( ph  ->  ( x  C_  U  ->  x  e.  U ) )  <->  ( ph  ->  ( ( y  u.  {
z } )  C_  U  ->  ( y  u. 
{ z } )  e.  U ) ) ) )
15 sseq1 3520 . . . . . 6  |-  ( x  =  A  ->  (
x  C_  U  <->  A  C_  U
) )
16 eleq1 2529 . . . . . 6  |-  ( x  =  A  ->  (
x  e.  U  <->  A  e.  U ) )
1715, 16imbi12d 320 . . . . 5  |-  ( x  =  A  ->  (
( x  C_  U  ->  x  e.  U )  <-> 
( A  C_  U  ->  A  e.  U ) ) )
1817imbi2d 316 . . . 4  |-  ( x  =  A  ->  (
( ph  ->  ( x 
C_  U  ->  x  e.  U ) )  <->  ( ph  ->  ( A  C_  U  ->  A  e.  U ) ) ) )
19 wun0.1 . . . . . 6  |-  ( ph  ->  U  e. WUni )
2019wun0 9113 . . . . 5  |-  ( ph  -> 
(/)  e.  U )
2120a1d 25 . . . 4  |-  ( ph  ->  ( (/)  C_  U  ->  (/) 
e.  U ) )
22 ssun1 3663 . . . . . . . . 9  |-  y  C_  ( y  u.  {
z } )
23 sstr 3507 . . . . . . . . 9  |-  ( ( y  C_  ( y  u.  { z } )  /\  ( y  u. 
{ z } ) 
C_  U )  -> 
y  C_  U )
2422, 23mpan 670 . . . . . . . 8  |-  ( ( y  u.  { z } )  C_  U  ->  y  C_  U )
2524imim1i 58 . . . . . . 7  |-  ( ( y  C_  U  ->  y  e.  U )  -> 
( ( y  u. 
{ z } ) 
C_  U  ->  y  e.  U ) )
2619adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
y  u.  { z } )  C_  U  /\  y  e.  U
) )  ->  U  e. WUni )
27 simprr 757 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
y  u.  { z } )  C_  U  /\  y  e.  U
) )  ->  y  e.  U )
28 simprl 756 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (
y  u.  { z } )  C_  U  /\  y  e.  U
) )  ->  (
y  u.  { z } )  C_  U
)
2928unssbd 3678 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( (
y  u.  { z } )  C_  U  /\  y  e.  U
) )  ->  { z }  C_  U )
30 vex 3112 . . . . . . . . . . . . 13  |-  z  e. 
_V
3130snss 4156 . . . . . . . . . . . 12  |-  ( z  e.  U  <->  { z }  C_  U )
3229, 31sylibr 212 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
y  u.  { z } )  C_  U  /\  y  e.  U
) )  ->  z  e.  U )
3326, 32wunsn 9111 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
y  u.  { z } )  C_  U  /\  y  e.  U
) )  ->  { z }  e.  U )
3426, 27, 33wunun 9105 . . . . . . . . 9  |-  ( (
ph  /\  ( (
y  u.  { z } )  C_  U  /\  y  e.  U
) )  ->  (
y  u.  { z } )  e.  U
)
3534exp32 605 . . . . . . . 8  |-  ( ph  ->  ( ( y  u. 
{ z } ) 
C_  U  ->  (
y  e.  U  -> 
( y  u.  {
z } )  e.  U ) ) )
3635a2d 26 . . . . . . 7  |-  ( ph  ->  ( ( ( y  u.  { z } )  C_  U  ->  y  e.  U )  -> 
( ( y  u. 
{ z } ) 
C_  U  ->  (
y  u.  { z } )  e.  U
) ) )
3725, 36syl5 32 . . . . . 6  |-  ( ph  ->  ( ( y  C_  U  ->  y  e.  U
)  ->  ( (
y  u.  { z } )  C_  U  ->  ( y  u.  {
z } )  e.  U ) ) )
3837a2i 13 . . . . 5  |-  ( (
ph  ->  ( y  C_  U  ->  y  e.  U
) )  ->  ( ph  ->  ( ( y  u.  { z } )  C_  U  ->  ( y  u.  { z } )  e.  U
) ) )
3938a1i 11 . . . 4  |-  ( y  e.  Fin  ->  (
( ph  ->  ( y 
C_  U  ->  y  e.  U ) )  -> 
( ph  ->  ( ( y  u.  { z } )  C_  U  ->  ( y  u.  {
z } )  e.  U ) ) ) )
406, 10, 14, 18, 21, 39findcard2 7778 . . 3  |-  ( A  e.  Fin  ->  ( ph  ->  ( A  C_  U  ->  A  e.  U
) ) )
412, 40mpcom 36 . 2  |-  ( ph  ->  ( A  C_  U  ->  A  e.  U ) )
421, 41mpd 15 1  |-  ( ph  ->  A  e.  U )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1395    e. wcel 1819    u. cun 3469    C_ wss 3471   (/)c0 3793   {csn 4032   Fincfn 7535  WUnicwun 9095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-br 4457  df-opab 4516  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-om 6700  df-1o 7148  df-er 7329  df-en 7536  df-fin 7539  df-wun 9097
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator