MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wrdlen2i Structured version   Unicode version

Theorem wrdlen2i 12940
Description: Implications of a word of length 2. (Contributed by AV, 27-Jul-2018.) (Proof shortened by AV, 14-Oct-2018.)
Assertion
Ref Expression
wrdlen2i  |-  ( ( S  e.  V  /\  T  e.  V )  ->  ( W  =  { <. 0 ,  S >. , 
<. 1 ,  T >. }  ->  ( ( W  e. Word  V  /\  ( # `
 W )  =  2 )  /\  (
( W `  0
)  =  S  /\  ( W `  1 )  =  T ) ) ) )

Proof of Theorem wrdlen2i
StepHypRef Expression
1 c0ex 9620 . . . . . . . 8  |-  0  e.  _V
2 1ex 9621 . . . . . . . 8  |-  1  e.  _V
31, 2pm3.2i 453 . . . . . . 7  |-  ( 0  e.  _V  /\  1  e.  _V )
43a1i 11 . . . . . 6  |-  ( ( ( S  e.  V  /\  T  e.  V
)  /\  W  =  { <. 0 ,  S >. ,  <. 1 ,  T >. } )  ->  (
0  e.  _V  /\  1  e.  _V )
)
5 simpl 455 . . . . . 6  |-  ( ( ( S  e.  V  /\  T  e.  V
)  /\  W  =  { <. 0 ,  S >. ,  <. 1 ,  T >. } )  ->  ( S  e.  V  /\  T  e.  V )
)
6 0ne1 10644 . . . . . . 7  |-  0  =/=  1
76a1i 11 . . . . . 6  |-  ( ( ( S  e.  V  /\  T  e.  V
)  /\  W  =  { <. 0 ,  S >. ,  <. 1 ,  T >. } )  ->  0  =/=  1 )
8 fprg 6060 . . . . . 6  |-  ( ( ( 0  e.  _V  /\  1  e.  _V )  /\  ( S  e.  V  /\  T  e.  V
)  /\  0  =/=  1 )  ->  { <. 0 ,  S >. , 
<. 1 ,  T >. } : { 0 ,  1 } --> { S ,  T } )
94, 5, 7, 8syl3anc 1230 . . . . 5  |-  ( ( ( S  e.  V  /\  T  e.  V
)  /\  W  =  { <. 0 ,  S >. ,  <. 1 ,  T >. } )  ->  { <. 0 ,  S >. , 
<. 1 ,  T >. } : { 0 ,  1 } --> { S ,  T } )
10 fzo0to2pr 11936 . . . . . . . . . . . . . 14  |-  ( 0..^ 2 )  =  {
0 ,  1 }
1110eqcomi 2415 . . . . . . . . . . . . 13  |-  { 0 ,  1 }  =  ( 0..^ 2 )
1211a1i 11 . . . . . . . . . . . 12  |-  ( ( S  e.  V  /\  T  e.  V )  ->  { 0 ,  1 }  =  ( 0..^ 2 ) )
1312feq2d 5701 . . . . . . . . . . 11  |-  ( ( S  e.  V  /\  T  e.  V )  ->  ( { <. 0 ,  S >. ,  <. 1 ,  T >. } : {
0 ,  1 } --> { S ,  T } 
<->  { <. 0 ,  S >. ,  <. 1 ,  T >. } : ( 0..^ 2 ) --> { S ,  T } ) )
1413biimpa 482 . . . . . . . . . 10  |-  ( ( ( S  e.  V  /\  T  e.  V
)  /\  { <. 0 ,  S >. ,  <. 1 ,  T >. } : {
0 ,  1 } --> { S ,  T } )  ->  { <. 0 ,  S >. , 
<. 1 ,  T >. } : ( 0..^ 2 ) --> { S ,  T } )
15 prssi 4128 . . . . . . . . . . 11  |-  ( ( S  e.  V  /\  T  e.  V )  ->  { S ,  T }  C_  V )
1615adantr 463 . . . . . . . . . 10  |-  ( ( ( S  e.  V  /\  T  e.  V
)  /\  { <. 0 ,  S >. ,  <. 1 ,  T >. } : {
0 ,  1 } --> { S ,  T } )  ->  { S ,  T }  C_  V
)
1714, 16fssd 5723 . . . . . . . . 9  |-  ( ( ( S  e.  V  /\  T  e.  V
)  /\  { <. 0 ,  S >. ,  <. 1 ,  T >. } : {
0 ,  1 } --> { S ,  T } )  ->  { <. 0 ,  S >. , 
<. 1 ,  T >. } : ( 0..^ 2 ) --> V )
1817ex 432 . . . . . . . 8  |-  ( ( S  e.  V  /\  T  e.  V )  ->  ( { <. 0 ,  S >. ,  <. 1 ,  T >. } : {
0 ,  1 } --> { S ,  T }  ->  { <. 0 ,  S >. ,  <. 1 ,  T >. } : ( 0..^ 2 ) --> V ) )
1918adantr 463 . . . . . . 7  |-  ( ( ( S  e.  V  /\  T  e.  V
)  /\  W  =  { <. 0 ,  S >. ,  <. 1 ,  T >. } )  ->  ( { <. 0 ,  S >. ,  <. 1 ,  T >. } : { 0 ,  1 } --> { S ,  T }  ->  { <. 0 ,  S >. , 
<. 1 ,  T >. } : ( 0..^ 2 ) --> V ) )
2019impcom 428 . . . . . 6  |-  ( ( { <. 0 ,  S >. ,  <. 1 ,  T >. } : { 0 ,  1 } --> { S ,  T }  /\  (
( S  e.  V  /\  T  e.  V
)  /\  W  =  { <. 0 ,  S >. ,  <. 1 ,  T >. } ) )  ->  { <. 0 ,  S >. ,  <. 1 ,  T >. } : ( 0..^ 2 ) --> V )
21 feq1 5696 . . . . . . . 8  |-  ( W  =  { <. 0 ,  S >. ,  <. 1 ,  T >. }  ->  ( W : ( 0..^ 2 ) --> V  <->  { <. 0 ,  S >. ,  <. 1 ,  T >. } : ( 0..^ 2 ) --> V ) )
2221adantl 464 . . . . . . 7  |-  ( ( ( S  e.  V  /\  T  e.  V
)  /\  W  =  { <. 0 ,  S >. ,  <. 1 ,  T >. } )  ->  ( W : ( 0..^ 2 ) --> V  <->  { <. 0 ,  S >. ,  <. 1 ,  T >. } : ( 0..^ 2 ) --> V ) )
2322adantl 464 . . . . . 6  |-  ( ( { <. 0 ,  S >. ,  <. 1 ,  T >. } : { 0 ,  1 } --> { S ,  T }  /\  (
( S  e.  V  /\  T  e.  V
)  /\  W  =  { <. 0 ,  S >. ,  <. 1 ,  T >. } ) )  -> 
( W : ( 0..^ 2 ) --> V  <->  { <. 0 ,  S >. ,  <. 1 ,  T >. } : ( 0..^ 2 ) --> V ) )
2420, 23mpbird 232 . . . . 5  |-  ( ( { <. 0 ,  S >. ,  <. 1 ,  T >. } : { 0 ,  1 } --> { S ,  T }  /\  (
( S  e.  V  /\  T  e.  V
)  /\  W  =  { <. 0 ,  S >. ,  <. 1 ,  T >. } ) )  ->  W : ( 0..^ 2 ) --> V )
259, 24mpancom 667 . . . 4  |-  ( ( ( S  e.  V  /\  T  e.  V
)  /\  W  =  { <. 0 ,  S >. ,  <. 1 ,  T >. } )  ->  W : ( 0..^ 2 ) --> V )
26 iswrdi 12602 . . . 4  |-  ( W : ( 0..^ 2 ) --> V  ->  W  e. Word  V )
2725, 26syl 17 . . 3  |-  ( ( ( S  e.  V  /\  T  e.  V
)  /\  W  =  { <. 0 ,  S >. ,  <. 1 ,  T >. } )  ->  W  e. Word  V )
28 fveq2 5849 . . . 4  |-  ( W  =  { <. 0 ,  S >. ,  <. 1 ,  T >. }  ->  ( # `
 W )  =  ( # `  { <. 0 ,  S >. , 
<. 1 ,  T >. } ) )
296neii 2602 . . . . . . 7  |-  -.  0  =  1
30 simpl 455 . . . . . . . 8  |-  ( ( S  e.  V  /\  T  e.  V )  ->  S  e.  V )
31 opth1g 4667 . . . . . . . 8  |-  ( ( 0  e.  _V  /\  S  e.  V )  ->  ( <. 0 ,  S >.  =  <. 1 ,  T >.  ->  0  =  1 ) )
321, 30, 31sylancr 661 . . . . . . 7  |-  ( ( S  e.  V  /\  T  e.  V )  ->  ( <. 0 ,  S >.  =  <. 1 ,  T >.  ->  0  =  1 ) )
3329, 32mtoi 178 . . . . . 6  |-  ( ( S  e.  V  /\  T  e.  V )  ->  -.  <. 0 ,  S >.  =  <. 1 ,  T >. )
3433neqned 2606 . . . . 5  |-  ( ( S  e.  V  /\  T  e.  V )  -> 
<. 0 ,  S >.  =/=  <. 1 ,  T >. )
35 opex 4655 . . . . . . 7  |-  <. 0 ,  S >.  e.  _V
36 opex 4655 . . . . . . 7  |-  <. 1 ,  T >.  e.  _V
3735, 36pm3.2i 453 . . . . . 6  |-  ( <.
0 ,  S >.  e. 
_V  /\  <. 1 ,  T >.  e.  _V )
38 hashprg 12509 . . . . . 6  |-  ( (
<. 0 ,  S >.  e.  _V  /\  <. 1 ,  T >.  e. 
_V )  ->  ( <. 0 ,  S >.  =/= 
<. 1 ,  T >.  <-> 
( # `  { <. 0 ,  S >. , 
<. 1 ,  T >. } )  =  2 ) )
3937, 38mp1i 13 . . . . 5  |-  ( ( S  e.  V  /\  T  e.  V )  ->  ( <. 0 ,  S >.  =/=  <. 1 ,  T >.  <-> 
( # `  { <. 0 ,  S >. , 
<. 1 ,  T >. } )  =  2 ) )
4034, 39mpbid 210 . . . 4  |-  ( ( S  e.  V  /\  T  e.  V )  ->  ( # `  { <. 0 ,  S >. , 
<. 1 ,  T >. } )  =  2 )
4128, 40sylan9eqr 2465 . . 3  |-  ( ( ( S  e.  V  /\  T  e.  V
)  /\  W  =  { <. 0 ,  S >. ,  <. 1 ,  T >. } )  ->  ( # `
 W )  =  2 )
421a1i 11 . . . . . . 7  |-  ( ( S  e.  V  /\  T  e.  V )  ->  0  e.  _V )
436a1i 11 . . . . . . 7  |-  ( ( S  e.  V  /\  T  e.  V )  ->  0  =/=  1 )
44 fvpr1g 6096 . . . . . . 7  |-  ( ( 0  e.  _V  /\  S  e.  V  /\  0  =/=  1 )  -> 
( { <. 0 ,  S >. ,  <. 1 ,  T >. } `  0
)  =  S )
4542, 30, 43, 44syl3anc 1230 . . . . . 6  |-  ( ( S  e.  V  /\  T  e.  V )  ->  ( { <. 0 ,  S >. ,  <. 1 ,  T >. } `  0
)  =  S )
462a1i 11 . . . . . . 7  |-  ( ( S  e.  V  /\  T  e.  V )  ->  1  e.  _V )
47 simpr 459 . . . . . . 7  |-  ( ( S  e.  V  /\  T  e.  V )  ->  T  e.  V )
48 fvpr2g 6097 . . . . . . 7  |-  ( ( 1  e.  _V  /\  T  e.  V  /\  0  =/=  1 )  -> 
( { <. 0 ,  S >. ,  <. 1 ,  T >. } `  1
)  =  T )
4946, 47, 43, 48syl3anc 1230 . . . . . 6  |-  ( ( S  e.  V  /\  T  e.  V )  ->  ( { <. 0 ,  S >. ,  <. 1 ,  T >. } `  1
)  =  T )
5045, 49jca 530 . . . . 5  |-  ( ( S  e.  V  /\  T  e.  V )  ->  ( ( { <. 0 ,  S >. , 
<. 1 ,  T >. } `  0 )  =  S  /\  ( { <. 0 ,  S >. ,  <. 1 ,  T >. } `  1 )  =  T ) )
5150adantr 463 . . . 4  |-  ( ( ( S  e.  V  /\  T  e.  V
)  /\  W  =  { <. 0 ,  S >. ,  <. 1 ,  T >. } )  ->  (
( { <. 0 ,  S >. ,  <. 1 ,  T >. } `  0
)  =  S  /\  ( { <. 0 ,  S >. ,  <. 1 ,  T >. } `  1 )  =  T ) )
52 fveq1 5848 . . . . . . 7  |-  ( W  =  { <. 0 ,  S >. ,  <. 1 ,  T >. }  ->  ( W `  0 )  =  ( { <. 0 ,  S >. , 
<. 1 ,  T >. } `  0 ) )
5352eqeq1d 2404 . . . . . 6  |-  ( W  =  { <. 0 ,  S >. ,  <. 1 ,  T >. }  ->  (
( W `  0
)  =  S  <->  ( { <. 0 ,  S >. , 
<. 1 ,  T >. } `  0 )  =  S ) )
54 fveq1 5848 . . . . . . 7  |-  ( W  =  { <. 0 ,  S >. ,  <. 1 ,  T >. }  ->  ( W `  1 )  =  ( { <. 0 ,  S >. , 
<. 1 ,  T >. } `  1 ) )
5554eqeq1d 2404 . . . . . 6  |-  ( W  =  { <. 0 ,  S >. ,  <. 1 ,  T >. }  ->  (
( W `  1
)  =  T  <->  ( { <. 0 ,  S >. , 
<. 1 ,  T >. } `  1 )  =  T ) )
5653, 55anbi12d 709 . . . . 5  |-  ( W  =  { <. 0 ,  S >. ,  <. 1 ,  T >. }  ->  (
( ( W ` 
0 )  =  S  /\  ( W ` 
1 )  =  T )  <->  ( ( {
<. 0 ,  S >. ,  <. 1 ,  T >. } `  0 )  =  S  /\  ( { <. 0 ,  S >. ,  <. 1 ,  T >. } `  1 )  =  T ) ) )
5756adantl 464 . . . 4  |-  ( ( ( S  e.  V  /\  T  e.  V
)  /\  W  =  { <. 0 ,  S >. ,  <. 1 ,  T >. } )  ->  (
( ( W ` 
0 )  =  S  /\  ( W ` 
1 )  =  T )  <->  ( ( {
<. 0 ,  S >. ,  <. 1 ,  T >. } `  0 )  =  S  /\  ( { <. 0 ,  S >. ,  <. 1 ,  T >. } `  1 )  =  T ) ) )
5851, 57mpbird 232 . . 3  |-  ( ( ( S  e.  V  /\  T  e.  V
)  /\  W  =  { <. 0 ,  S >. ,  <. 1 ,  T >. } )  ->  (
( W `  0
)  =  S  /\  ( W `  1 )  =  T ) )
5927, 41, 58jca31 532 . 2  |-  ( ( ( S  e.  V  /\  T  e.  V
)  /\  W  =  { <. 0 ,  S >. ,  <. 1 ,  T >. } )  ->  (
( W  e. Word  V  /\  ( # `  W
)  =  2 )  /\  ( ( W `
 0 )  =  S  /\  ( W `
 1 )  =  T ) ) )
6059ex 432 1  |-  ( ( S  e.  V  /\  T  e.  V )  ->  ( W  =  { <. 0 ,  S >. , 
<. 1 ,  T >. }  ->  ( ( W  e. Word  V  /\  ( # `
 W )  =  2 )  /\  (
( W `  0
)  =  S  /\  ( W `  1 )  =  T ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1405    e. wcel 1842    =/= wne 2598   _Vcvv 3059    C_ wss 3414   {cpr 3974   <.cop 3978   -->wf 5565   ` cfv 5569  (class class class)co 6278   0cc0 9522   1c1 9523   2c2 10626  ..^cfzo 11854   #chash 12452  Word cword 12583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-cnex 9578  ax-resscn 9579  ax-1cn 9580  ax-icn 9581  ax-addcl 9582  ax-addrcl 9583  ax-mulcl 9584  ax-mulrcl 9585  ax-mulcom 9586  ax-addass 9587  ax-mulass 9588  ax-distr 9589  ax-i2m1 9590  ax-1ne0 9591  ax-1rid 9592  ax-rnegex 9593  ax-rrecex 9594  ax-cnre 9595  ax-pre-lttri 9596  ax-pre-lttrn 9597  ax-pre-ltadd 9598  ax-pre-mulgt0 9599
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2759  df-rex 2760  df-reu 2761  df-rmo 2762  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-int 4228  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-pred 5367  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-om 6684  df-1st 6784  df-2nd 6785  df-wrecs 7013  df-recs 7075  df-rdg 7113  df-1o 7167  df-oadd 7171  df-er 7348  df-en 7555  df-dom 7556  df-sdom 7557  df-fin 7558  df-card 8352  df-cda 8580  df-pnf 9660  df-mnf 9661  df-xr 9662  df-ltxr 9663  df-le 9664  df-sub 9843  df-neg 9844  df-nn 10577  df-2 10635  df-n0 10837  df-z 10906  df-uz 11128  df-fz 11727  df-fzo 11855  df-hash 12453  df-word 12591
This theorem is referenced by:  wrdlen2  12942  wwlktovfo  12952
  Copyright terms: Public domain W3C validator