MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wrdlen2i Structured version   Visualization version   Unicode version

Theorem wrdlen2i 13093
Description: Implications of a word of length 2. (Contributed by AV, 27-Jul-2018.) (Proof shortened by AV, 14-Oct-2018.)
Assertion
Ref Expression
wrdlen2i  |-  ( ( S  e.  V  /\  T  e.  V )  ->  ( W  =  { <. 0 ,  S >. , 
<. 1 ,  T >. }  ->  ( ( W  e. Word  V  /\  ( # `
 W )  =  2 )  /\  (
( W `  0
)  =  S  /\  ( W `  1 )  =  T ) ) ) )

Proof of Theorem wrdlen2i
StepHypRef Expression
1 c0ex 9655 . . . . . . . 8  |-  0  e.  _V
2 1ex 9656 . . . . . . . 8  |-  1  e.  _V
31, 2pm3.2i 462 . . . . . . 7  |-  ( 0  e.  _V  /\  1  e.  _V )
43a1i 11 . . . . . 6  |-  ( ( ( S  e.  V  /\  T  e.  V
)  /\  W  =  { <. 0 ,  S >. ,  <. 1 ,  T >. } )  ->  (
0  e.  _V  /\  1  e.  _V )
)
5 simpl 464 . . . . . 6  |-  ( ( ( S  e.  V  /\  T  e.  V
)  /\  W  =  { <. 0 ,  S >. ,  <. 1 ,  T >. } )  ->  ( S  e.  V  /\  T  e.  V )
)
6 0ne1 10699 . . . . . . 7  |-  0  =/=  1
76a1i 11 . . . . . 6  |-  ( ( ( S  e.  V  /\  T  e.  V
)  /\  W  =  { <. 0 ,  S >. ,  <. 1 ,  T >. } )  ->  0  =/=  1 )
8 fprg 6089 . . . . . 6  |-  ( ( ( 0  e.  _V  /\  1  e.  _V )  /\  ( S  e.  V  /\  T  e.  V
)  /\  0  =/=  1 )  ->  { <. 0 ,  S >. , 
<. 1 ,  T >. } : { 0 ,  1 } --> { S ,  T } )
94, 5, 7, 8syl3anc 1292 . . . . 5  |-  ( ( ( S  e.  V  /\  T  e.  V
)  /\  W  =  { <. 0 ,  S >. ,  <. 1 ,  T >. } )  ->  { <. 0 ,  S >. , 
<. 1 ,  T >. } : { 0 ,  1 } --> { S ,  T } )
10 fzo0to2pr 12027 . . . . . . . . . . . . . 14  |-  ( 0..^ 2 )  =  {
0 ,  1 }
1110eqcomi 2480 . . . . . . . . . . . . 13  |-  { 0 ,  1 }  =  ( 0..^ 2 )
1211a1i 11 . . . . . . . . . . . 12  |-  ( ( S  e.  V  /\  T  e.  V )  ->  { 0 ,  1 }  =  ( 0..^ 2 ) )
1312feq2d 5725 . . . . . . . . . . 11  |-  ( ( S  e.  V  /\  T  e.  V )  ->  ( { <. 0 ,  S >. ,  <. 1 ,  T >. } : {
0 ,  1 } --> { S ,  T } 
<->  { <. 0 ,  S >. ,  <. 1 ,  T >. } : ( 0..^ 2 ) --> { S ,  T } ) )
1413biimpa 492 . . . . . . . . . 10  |-  ( ( ( S  e.  V  /\  T  e.  V
)  /\  { <. 0 ,  S >. ,  <. 1 ,  T >. } : {
0 ,  1 } --> { S ,  T } )  ->  { <. 0 ,  S >. , 
<. 1 ,  T >. } : ( 0..^ 2 ) --> { S ,  T } )
15 prssi 4119 . . . . . . . . . . 11  |-  ( ( S  e.  V  /\  T  e.  V )  ->  { S ,  T }  C_  V )
1615adantr 472 . . . . . . . . . 10  |-  ( ( ( S  e.  V  /\  T  e.  V
)  /\  { <. 0 ,  S >. ,  <. 1 ,  T >. } : {
0 ,  1 } --> { S ,  T } )  ->  { S ,  T }  C_  V
)
1714, 16fssd 5750 . . . . . . . . 9  |-  ( ( ( S  e.  V  /\  T  e.  V
)  /\  { <. 0 ,  S >. ,  <. 1 ,  T >. } : {
0 ,  1 } --> { S ,  T } )  ->  { <. 0 ,  S >. , 
<. 1 ,  T >. } : ( 0..^ 2 ) --> V )
1817ex 441 . . . . . . . 8  |-  ( ( S  e.  V  /\  T  e.  V )  ->  ( { <. 0 ,  S >. ,  <. 1 ,  T >. } : {
0 ,  1 } --> { S ,  T }  ->  { <. 0 ,  S >. ,  <. 1 ,  T >. } : ( 0..^ 2 ) --> V ) )
1918adantr 472 . . . . . . 7  |-  ( ( ( S  e.  V  /\  T  e.  V
)  /\  W  =  { <. 0 ,  S >. ,  <. 1 ,  T >. } )  ->  ( { <. 0 ,  S >. ,  <. 1 ,  T >. } : { 0 ,  1 } --> { S ,  T }  ->  { <. 0 ,  S >. , 
<. 1 ,  T >. } : ( 0..^ 2 ) --> V ) )
2019impcom 437 . . . . . 6  |-  ( ( { <. 0 ,  S >. ,  <. 1 ,  T >. } : { 0 ,  1 } --> { S ,  T }  /\  (
( S  e.  V  /\  T  e.  V
)  /\  W  =  { <. 0 ,  S >. ,  <. 1 ,  T >. } ) )  ->  { <. 0 ,  S >. ,  <. 1 ,  T >. } : ( 0..^ 2 ) --> V )
21 feq1 5720 . . . . . . . 8  |-  ( W  =  { <. 0 ,  S >. ,  <. 1 ,  T >. }  ->  ( W : ( 0..^ 2 ) --> V  <->  { <. 0 ,  S >. ,  <. 1 ,  T >. } : ( 0..^ 2 ) --> V ) )
2221adantl 473 . . . . . . 7  |-  ( ( ( S  e.  V  /\  T  e.  V
)  /\  W  =  { <. 0 ,  S >. ,  <. 1 ,  T >. } )  ->  ( W : ( 0..^ 2 ) --> V  <->  { <. 0 ,  S >. ,  <. 1 ,  T >. } : ( 0..^ 2 ) --> V ) )
2322adantl 473 . . . . . 6  |-  ( ( { <. 0 ,  S >. ,  <. 1 ,  T >. } : { 0 ,  1 } --> { S ,  T }  /\  (
( S  e.  V  /\  T  e.  V
)  /\  W  =  { <. 0 ,  S >. ,  <. 1 ,  T >. } ) )  -> 
( W : ( 0..^ 2 ) --> V  <->  { <. 0 ,  S >. ,  <. 1 ,  T >. } : ( 0..^ 2 ) --> V ) )
2420, 23mpbird 240 . . . . 5  |-  ( ( { <. 0 ,  S >. ,  <. 1 ,  T >. } : { 0 ,  1 } --> { S ,  T }  /\  (
( S  e.  V  /\  T  e.  V
)  /\  W  =  { <. 0 ,  S >. ,  <. 1 ,  T >. } ) )  ->  W : ( 0..^ 2 ) --> V )
259, 24mpancom 682 . . . 4  |-  ( ( ( S  e.  V  /\  T  e.  V
)  /\  W  =  { <. 0 ,  S >. ,  <. 1 ,  T >. } )  ->  W : ( 0..^ 2 ) --> V )
26 iswrdi 12722 . . . 4  |-  ( W : ( 0..^ 2 ) --> V  ->  W  e. Word  V )
2725, 26syl 17 . . 3  |-  ( ( ( S  e.  V  /\  T  e.  V
)  /\  W  =  { <. 0 ,  S >. ,  <. 1 ,  T >. } )  ->  W  e. Word  V )
28 fveq2 5879 . . . 4  |-  ( W  =  { <. 0 ,  S >. ,  <. 1 ,  T >. }  ->  ( # `
 W )  =  ( # `  { <. 0 ,  S >. , 
<. 1 ,  T >. } ) )
296neii 2645 . . . . . . 7  |-  -.  0  =  1
30 simpl 464 . . . . . . . 8  |-  ( ( S  e.  V  /\  T  e.  V )  ->  S  e.  V )
31 opth1g 4678 . . . . . . . 8  |-  ( ( 0  e.  _V  /\  S  e.  V )  ->  ( <. 0 ,  S >.  =  <. 1 ,  T >.  ->  0  =  1 ) )
321, 30, 31sylancr 676 . . . . . . 7  |-  ( ( S  e.  V  /\  T  e.  V )  ->  ( <. 0 ,  S >.  =  <. 1 ,  T >.  ->  0  =  1 ) )
3329, 32mtoi 183 . . . . . 6  |-  ( ( S  e.  V  /\  T  e.  V )  ->  -.  <. 0 ,  S >.  =  <. 1 ,  T >. )
3433neqned 2650 . . . . 5  |-  ( ( S  e.  V  /\  T  e.  V )  -> 
<. 0 ,  S >.  =/=  <. 1 ,  T >. )
35 opex 4664 . . . . . . 7  |-  <. 0 ,  S >.  e.  _V
36 opex 4664 . . . . . . 7  |-  <. 1 ,  T >.  e.  _V
3735, 36pm3.2i 462 . . . . . 6  |-  ( <.
0 ,  S >.  e. 
_V  /\  <. 1 ,  T >.  e.  _V )
38 hashprg 12610 . . . . . 6  |-  ( (
<. 0 ,  S >.  e.  _V  /\  <. 1 ,  T >.  e. 
_V )  ->  ( <. 0 ,  S >.  =/= 
<. 1 ,  T >.  <-> 
( # `  { <. 0 ,  S >. , 
<. 1 ,  T >. } )  =  2 ) )
3937, 38mp1i 13 . . . . 5  |-  ( ( S  e.  V  /\  T  e.  V )  ->  ( <. 0 ,  S >.  =/=  <. 1 ,  T >.  <-> 
( # `  { <. 0 ,  S >. , 
<. 1 ,  T >. } )  =  2 ) )
4034, 39mpbid 215 . . . 4  |-  ( ( S  e.  V  /\  T  e.  V )  ->  ( # `  { <. 0 ,  S >. , 
<. 1 ,  T >. } )  =  2 )
4128, 40sylan9eqr 2527 . . 3  |-  ( ( ( S  e.  V  /\  T  e.  V
)  /\  W  =  { <. 0 ,  S >. ,  <. 1 ,  T >. } )  ->  ( # `
 W )  =  2 )
421a1i 11 . . . . . . 7  |-  ( ( S  e.  V  /\  T  e.  V )  ->  0  e.  _V )
436a1i 11 . . . . . . 7  |-  ( ( S  e.  V  /\  T  e.  V )  ->  0  =/=  1 )
44 fvpr1g 6125 . . . . . . 7  |-  ( ( 0  e.  _V  /\  S  e.  V  /\  0  =/=  1 )  -> 
( { <. 0 ,  S >. ,  <. 1 ,  T >. } `  0
)  =  S )
4542, 30, 43, 44syl3anc 1292 . . . . . 6  |-  ( ( S  e.  V  /\  T  e.  V )  ->  ( { <. 0 ,  S >. ,  <. 1 ,  T >. } `  0
)  =  S )
462a1i 11 . . . . . . 7  |-  ( ( S  e.  V  /\  T  e.  V )  ->  1  e.  _V )
47 simpr 468 . . . . . . 7  |-  ( ( S  e.  V  /\  T  e.  V )  ->  T  e.  V )
48 fvpr2g 6126 . . . . . . 7  |-  ( ( 1  e.  _V  /\  T  e.  V  /\  0  =/=  1 )  -> 
( { <. 0 ,  S >. ,  <. 1 ,  T >. } `  1
)  =  T )
4946, 47, 43, 48syl3anc 1292 . . . . . 6  |-  ( ( S  e.  V  /\  T  e.  V )  ->  ( { <. 0 ,  S >. ,  <. 1 ,  T >. } `  1
)  =  T )
5045, 49jca 541 . . . . 5  |-  ( ( S  e.  V  /\  T  e.  V )  ->  ( ( { <. 0 ,  S >. , 
<. 1 ,  T >. } `  0 )  =  S  /\  ( { <. 0 ,  S >. ,  <. 1 ,  T >. } `  1 )  =  T ) )
5150adantr 472 . . . 4  |-  ( ( ( S  e.  V  /\  T  e.  V
)  /\  W  =  { <. 0 ,  S >. ,  <. 1 ,  T >. } )  ->  (
( { <. 0 ,  S >. ,  <. 1 ,  T >. } `  0
)  =  S  /\  ( { <. 0 ,  S >. ,  <. 1 ,  T >. } `  1 )  =  T ) )
52 fveq1 5878 . . . . . . 7  |-  ( W  =  { <. 0 ,  S >. ,  <. 1 ,  T >. }  ->  ( W `  0 )  =  ( { <. 0 ,  S >. , 
<. 1 ,  T >. } `  0 ) )
5352eqeq1d 2473 . . . . . 6  |-  ( W  =  { <. 0 ,  S >. ,  <. 1 ,  T >. }  ->  (
( W `  0
)  =  S  <->  ( { <. 0 ,  S >. , 
<. 1 ,  T >. } `  0 )  =  S ) )
54 fveq1 5878 . . . . . . 7  |-  ( W  =  { <. 0 ,  S >. ,  <. 1 ,  T >. }  ->  ( W `  1 )  =  ( { <. 0 ,  S >. , 
<. 1 ,  T >. } `  1 ) )
5554eqeq1d 2473 . . . . . 6  |-  ( W  =  { <. 0 ,  S >. ,  <. 1 ,  T >. }  ->  (
( W `  1
)  =  T  <->  ( { <. 0 ,  S >. , 
<. 1 ,  T >. } `  1 )  =  T ) )
5653, 55anbi12d 725 . . . . 5  |-  ( W  =  { <. 0 ,  S >. ,  <. 1 ,  T >. }  ->  (
( ( W ` 
0 )  =  S  /\  ( W ` 
1 )  =  T )  <->  ( ( {
<. 0 ,  S >. ,  <. 1 ,  T >. } `  0 )  =  S  /\  ( { <. 0 ,  S >. ,  <. 1 ,  T >. } `  1 )  =  T ) ) )
5756adantl 473 . . . 4  |-  ( ( ( S  e.  V  /\  T  e.  V
)  /\  W  =  { <. 0 ,  S >. ,  <. 1 ,  T >. } )  ->  (
( ( W ` 
0 )  =  S  /\  ( W ` 
1 )  =  T )  <->  ( ( {
<. 0 ,  S >. ,  <. 1 ,  T >. } `  0 )  =  S  /\  ( { <. 0 ,  S >. ,  <. 1 ,  T >. } `  1 )  =  T ) ) )
5851, 57mpbird 240 . . 3  |-  ( ( ( S  e.  V  /\  T  e.  V
)  /\  W  =  { <. 0 ,  S >. ,  <. 1 ,  T >. } )  ->  (
( W `  0
)  =  S  /\  ( W `  1 )  =  T ) )
5927, 41, 58jca31 543 . 2  |-  ( ( ( S  e.  V  /\  T  e.  V
)  /\  W  =  { <. 0 ,  S >. ,  <. 1 ,  T >. } )  ->  (
( W  e. Word  V  /\  ( # `  W
)  =  2 )  /\  ( ( W `
 0 )  =  S  /\  ( W `
 1 )  =  T ) ) )
6059ex 441 1  |-  ( ( S  e.  V  /\  T  e.  V )  ->  ( W  =  { <. 0 ,  S >. , 
<. 1 ,  T >. }  ->  ( ( W  e. Word  V  /\  ( # `
 W )  =  2 )  /\  (
( W `  0
)  =  S  /\  ( W `  1 )  =  T ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    = wceq 1452    e. wcel 1904    =/= wne 2641   _Vcvv 3031    C_ wss 3390   {cpr 3961   <.cop 3965   -->wf 5585   ` cfv 5589  (class class class)co 6308   0cc0 9557   1c1 9558   2c2 10681  ..^cfzo 11942   #chash 12553  Word cword 12703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-oadd 7204  df-er 7381  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-card 8391  df-cda 8616  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-nn 10632  df-2 10690  df-n0 10894  df-z 10962  df-uz 11183  df-fz 11811  df-fzo 11943  df-hash 12554  df-word 12711
This theorem is referenced by:  wrdlen2  13095  wwlktovfo  13108
  Copyright terms: Public domain W3C validator