MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wrdind Structured version   Unicode version

Theorem wrdind 12818
Description: Perform induction over the structure of a word. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
Hypotheses
Ref Expression
wrdind.1  |-  ( x  =  (/)  ->  ( ph  <->  ps ) )
wrdind.2  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
wrdind.3  |-  ( x  =  ( y ++  <" z "> )  ->  ( ph  <->  th )
)
wrdind.4  |-  ( x  =  A  ->  ( ph 
<->  ta ) )
wrdind.5  |-  ps
wrdind.6  |-  ( ( y  e. Word  B  /\  z  e.  B )  ->  ( ch  ->  th )
)
Assertion
Ref Expression
wrdind  |-  ( A  e. Word  B  ->  ta )
Distinct variable groups:    x, A    x, y, z, B    ch, x    ph, y, z    ta, x    th, x
Allowed substitution hints:    ph( x)    ps( x, y, z)    ch( y,
z)    th( y, z)    ta( y, z)    A( y, z)

Proof of Theorem wrdind
Dummy variables  n  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lencl 12674 . . 3  |-  ( A  e. Word  B  ->  ( # `
 A )  e. 
NN0 )
2 eqeq2 2444 . . . . . 6  |-  ( n  =  0  ->  (
( # `  x )  =  n  <->  ( # `  x
)  =  0 ) )
32imbi1d 318 . . . . 5  |-  ( n  =  0  ->  (
( ( # `  x
)  =  n  ->  ph )  <->  ( ( # `  x )  =  0  ->  ph ) ) )
43ralbidv 2871 . . . 4  |-  ( n  =  0  ->  ( A. x  e. Word  B ( ( # `  x
)  =  n  ->  ph )  <->  A. x  e. Word  B
( ( # `  x
)  =  0  ->  ph ) ) )
5 eqeq2 2444 . . . . . 6  |-  ( n  =  m  ->  (
( # `  x )  =  n  <->  ( # `  x
)  =  m ) )
65imbi1d 318 . . . . 5  |-  ( n  =  m  ->  (
( ( # `  x
)  =  n  ->  ph )  <->  ( ( # `  x )  =  m  ->  ph ) ) )
76ralbidv 2871 . . . 4  |-  ( n  =  m  ->  ( A. x  e. Word  B ( ( # `  x
)  =  n  ->  ph )  <->  A. x  e. Word  B
( ( # `  x
)  =  m  ->  ph ) ) )
8 eqeq2 2444 . . . . . 6  |-  ( n  =  ( m  + 
1 )  ->  (
( # `  x )  =  n  <->  ( # `  x
)  =  ( m  +  1 ) ) )
98imbi1d 318 . . . . 5  |-  ( n  =  ( m  + 
1 )  ->  (
( ( # `  x
)  =  n  ->  ph )  <->  ( ( # `  x )  =  ( m  +  1 )  ->  ph ) ) )
109ralbidv 2871 . . . 4  |-  ( n  =  ( m  + 
1 )  ->  ( A. x  e. Word  B ( ( # `  x
)  =  n  ->  ph )  <->  A. x  e. Word  B
( ( # `  x
)  =  ( m  +  1 )  ->  ph ) ) )
11 eqeq2 2444 . . . . . 6  |-  ( n  =  ( # `  A
)  ->  ( ( # `
 x )  =  n  <->  ( # `  x
)  =  ( # `  A ) ) )
1211imbi1d 318 . . . . 5  |-  ( n  =  ( # `  A
)  ->  ( (
( # `  x )  =  n  ->  ph )  <->  ( ( # `  x
)  =  ( # `  A )  ->  ph )
) )
1312ralbidv 2871 . . . 4  |-  ( n  =  ( # `  A
)  ->  ( A. x  e. Word  B (
( # `  x )  =  n  ->  ph )  <->  A. x  e. Word  B ( ( # `  x
)  =  ( # `  A )  ->  ph )
) )
14 hasheq0 12541 . . . . . 6  |-  ( x  e. Word  B  ->  (
( # `  x )  =  0  <->  x  =  (/) ) )
15 wrdind.5 . . . . . . 7  |-  ps
16 wrdind.1 . . . . . . 7  |-  ( x  =  (/)  ->  ( ph  <->  ps ) )
1715, 16mpbiri 236 . . . . . 6  |-  ( x  =  (/)  ->  ph )
1814, 17syl6bi 231 . . . . 5  |-  ( x  e. Word  B  ->  (
( # `  x )  =  0  ->  ph )
)
1918rgen 2792 . . . 4  |-  A. x  e. Word  B ( ( # `  x )  =  0  ->  ph )
20 fveq2 5881 . . . . . . . 8  |-  ( x  =  y  ->  ( # `
 x )  =  ( # `  y
) )
2120eqeq1d 2431 . . . . . . 7  |-  ( x  =  y  ->  (
( # `  x )  =  m  <->  ( # `  y
)  =  m ) )
22 wrdind.2 . . . . . . 7  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
2321, 22imbi12d 321 . . . . . 6  |-  ( x  =  y  ->  (
( ( # `  x
)  =  m  ->  ph )  <->  ( ( # `  y )  =  m  ->  ch ) ) )
2423cbvralv 3062 . . . . 5  |-  ( A. x  e. Word  B (
( # `  x )  =  m  ->  ph )  <->  A. y  e. Word  B ( ( # `  y
)  =  m  ->  ch ) )
25 swrdcl 12760 . . . . . . . . . . . 12  |-  ( x  e. Word  B  ->  (
x substr  <. 0 ,  ( ( # `  x
)  -  1 )
>. )  e. Word  B )
2625ad2antrl 732 . . . . . . . . . . 11  |-  ( ( ( m  e.  NN0  /\ 
A. y  e. Word  B
( ( # `  y
)  =  m  ->  ch ) )  /\  (
x  e. Word  B  /\  ( # `  x )  =  ( m  + 
1 ) ) )  ->  ( x substr  <. 0 ,  ( ( # `  x )  -  1 ) >. )  e. Word  B
)
27 simplr 760 . . . . . . . . . . 11  |-  ( ( ( m  e.  NN0  /\ 
A. y  e. Word  B
( ( # `  y
)  =  m  ->  ch ) )  /\  (
x  e. Word  B  /\  ( # `  x )  =  ( m  + 
1 ) ) )  ->  A. y  e. Word  B
( ( # `  y
)  =  m  ->  ch ) )
28 simprl 762 . . . . . . . . . . . . 13  |-  ( ( ( m  e.  NN0  /\ 
A. y  e. Word  B
( ( # `  y
)  =  m  ->  ch ) )  /\  (
x  e. Word  B  /\  ( # `  x )  =  ( m  + 
1 ) ) )  ->  x  e. Word  B
)
29 fzossfz 11936 . . . . . . . . . . . . . 14  |-  ( 0..^ ( # `  x
) )  C_  (
0 ... ( # `  x
) )
30 simprr 764 . . . . . . . . . . . . . . . 16  |-  ( ( ( m  e.  NN0  /\ 
A. y  e. Word  B
( ( # `  y
)  =  m  ->  ch ) )  /\  (
x  e. Word  B  /\  ( # `  x )  =  ( m  + 
1 ) ) )  ->  ( # `  x
)  =  ( m  +  1 ) )
31 nn0p1nn 10909 . . . . . . . . . . . . . . . . 17  |-  ( m  e.  NN0  ->  ( m  +  1 )  e.  NN )
3231ad2antrr 730 . . . . . . . . . . . . . . . 16  |-  ( ( ( m  e.  NN0  /\ 
A. y  e. Word  B
( ( # `  y
)  =  m  ->  ch ) )  /\  (
x  e. Word  B  /\  ( # `  x )  =  ( m  + 
1 ) ) )  ->  ( m  + 
1 )  e.  NN )
3330, 32eqeltrd 2517 . . . . . . . . . . . . . . 15  |-  ( ( ( m  e.  NN0  /\ 
A. y  e. Word  B
( ( # `  y
)  =  m  ->  ch ) )  /\  (
x  e. Word  B  /\  ( # `  x )  =  ( m  + 
1 ) ) )  ->  ( # `  x
)  e.  NN )
34 fzo0end 12000 . . . . . . . . . . . . . . 15  |-  ( (
# `  x )  e.  NN  ->  ( ( # `
 x )  - 
1 )  e.  ( 0..^ ( # `  x
) ) )
3533, 34syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( m  e.  NN0  /\ 
A. y  e. Word  B
( ( # `  y
)  =  m  ->  ch ) )  /\  (
x  e. Word  B  /\  ( # `  x )  =  ( m  + 
1 ) ) )  ->  ( ( # `  x )  -  1 )  e.  ( 0..^ ( # `  x
) ) )
3629, 35sseldi 3468 . . . . . . . . . . . . 13  |-  ( ( ( m  e.  NN0  /\ 
A. y  e. Word  B
( ( # `  y
)  =  m  ->  ch ) )  /\  (
x  e. Word  B  /\  ( # `  x )  =  ( m  + 
1 ) ) )  ->  ( ( # `  x )  -  1 )  e.  ( 0 ... ( # `  x
) ) )
37 swrd0len 12763 . . . . . . . . . . . . 13  |-  ( ( x  e. Word  B  /\  ( ( # `  x
)  -  1 )  e.  ( 0 ... ( # `  x
) ) )  -> 
( # `  ( x substr  <. 0 ,  ( (
# `  x )  -  1 ) >.
) )  =  ( ( # `  x
)  -  1 ) )
3828, 36, 37syl2anc 665 . . . . . . . . . . . 12  |-  ( ( ( m  e.  NN0  /\ 
A. y  e. Word  B
( ( # `  y
)  =  m  ->  ch ) )  /\  (
x  e. Word  B  /\  ( # `  x )  =  ( m  + 
1 ) ) )  ->  ( # `  (
x substr  <. 0 ,  ( ( # `  x
)  -  1 )
>. ) )  =  ( ( # `  x
)  -  1 ) )
3930oveq1d 6320 . . . . . . . . . . . 12  |-  ( ( ( m  e.  NN0  /\ 
A. y  e. Word  B
( ( # `  y
)  =  m  ->  ch ) )  /\  (
x  e. Word  B  /\  ( # `  x )  =  ( m  + 
1 ) ) )  ->  ( ( # `  x )  -  1 )  =  ( ( m  +  1 )  -  1 ) )
40 nn0cn 10879 . . . . . . . . . . . . . 14  |-  ( m  e.  NN0  ->  m  e.  CC )
4140ad2antrr 730 . . . . . . . . . . . . 13  |-  ( ( ( m  e.  NN0  /\ 
A. y  e. Word  B
( ( # `  y
)  =  m  ->  ch ) )  /\  (
x  e. Word  B  /\  ( # `  x )  =  ( m  + 
1 ) ) )  ->  m  e.  CC )
42 ax-1cn 9596 . . . . . . . . . . . . 13  |-  1  e.  CC
43 pncan 9880 . . . . . . . . . . . . 13  |-  ( ( m  e.  CC  /\  1  e.  CC )  ->  ( ( m  + 
1 )  -  1 )  =  m )
4441, 42, 43sylancl 666 . . . . . . . . . . . 12  |-  ( ( ( m  e.  NN0  /\ 
A. y  e. Word  B
( ( # `  y
)  =  m  ->  ch ) )  /\  (
x  e. Word  B  /\  ( # `  x )  =  ( m  + 
1 ) ) )  ->  ( ( m  +  1 )  - 
1 )  =  m )
4538, 39, 443eqtrd 2474 . . . . . . . . . . 11  |-  ( ( ( m  e.  NN0  /\ 
A. y  e. Word  B
( ( # `  y
)  =  m  ->  ch ) )  /\  (
x  e. Word  B  /\  ( # `  x )  =  ( m  + 
1 ) ) )  ->  ( # `  (
x substr  <. 0 ,  ( ( # `  x
)  -  1 )
>. ) )  =  m )
46 fveq2 5881 . . . . . . . . . . . . . 14  |-  ( y  =  ( x substr  <. 0 ,  ( ( # `  x )  -  1 ) >. )  ->  ( # `
 y )  =  ( # `  (
x substr  <. 0 ,  ( ( # `  x
)  -  1 )
>. ) ) )
4746eqeq1d 2431 . . . . . . . . . . . . 13  |-  ( y  =  ( x substr  <. 0 ,  ( ( # `  x )  -  1 ) >. )  ->  (
( # `  y )  =  m  <->  ( # `  (
x substr  <. 0 ,  ( ( # `  x
)  -  1 )
>. ) )  =  m ) )
48 vex 3090 . . . . . . . . . . . . . . 15  |-  y  e. 
_V
4948, 22sbcie 3340 . . . . . . . . . . . . . 14  |-  ( [. y  /  x ]. ph  <->  ch )
50 dfsbcq 3307 . . . . . . . . . . . . . 14  |-  ( y  =  ( x substr  <. 0 ,  ( ( # `  x )  -  1 ) >. )  ->  ( [. y  /  x ]. ph  <->  [. ( x substr  <. 0 ,  ( ( # `  x )  -  1 ) >. )  /  x ]. ph ) )
5149, 50syl5bbr 262 . . . . . . . . . . . . 13  |-  ( y  =  ( x substr  <. 0 ,  ( ( # `  x )  -  1 ) >. )  ->  ( ch 
<-> 
[. ( x substr  <. 0 ,  ( ( # `  x )  -  1 ) >. )  /  x ]. ph ) )
5247, 51imbi12d 321 . . . . . . . . . . . 12  |-  ( y  =  ( x substr  <. 0 ,  ( ( # `  x )  -  1 ) >. )  ->  (
( ( # `  y
)  =  m  ->  ch )  <->  ( ( # `  ( x substr  <. 0 ,  ( ( # `  x )  -  1 ) >. ) )  =  m  ->  [. ( x substr  <. 0 ,  ( (
# `  x )  -  1 ) >.
)  /  x ]. ph ) ) )
5352rspcv 3184 . . . . . . . . . . 11  |-  ( ( x substr  <. 0 ,  ( ( # `  x
)  -  1 )
>. )  e. Word  B  -> 
( A. y  e. Word  B ( ( # `  y )  =  m  ->  ch )  -> 
( ( # `  (
x substr  <. 0 ,  ( ( # `  x
)  -  1 )
>. ) )  =  m  ->  [. ( x substr  <. 0 ,  ( ( # `  x )  -  1 ) >. )  /  x ]. ph ) ) )
5426, 27, 45, 53syl3c 63 . . . . . . . . . 10  |-  ( ( ( m  e.  NN0  /\ 
A. y  e. Word  B
( ( # `  y
)  =  m  ->  ch ) )  /\  (
x  e. Word  B  /\  ( # `  x )  =  ( m  + 
1 ) ) )  ->  [. ( x substr  <. 0 ,  ( ( # `  x )  -  1 ) >. )  /  x ]. ph )
5533nnge1d 10652 . . . . . . . . . . . . 13  |-  ( ( ( m  e.  NN0  /\ 
A. y  e. Word  B
( ( # `  y
)  =  m  ->  ch ) )  /\  (
x  e. Word  B  /\  ( # `  x )  =  ( m  + 
1 ) ) )  ->  1  <_  ( # `
 x ) )
56 wrdlenge1n0 12689 . . . . . . . . . . . . . 14  |-  ( x  e. Word  B  ->  (
x  =/=  (/)  <->  1  <_  (
# `  x )
) )
5756ad2antrl 732 . . . . . . . . . . . . 13  |-  ( ( ( m  e.  NN0  /\ 
A. y  e. Word  B
( ( # `  y
)  =  m  ->  ch ) )  /\  (
x  e. Word  B  /\  ( # `  x )  =  ( m  + 
1 ) ) )  ->  ( x  =/=  (/) 
<->  1  <_  ( # `  x
) ) )
5855, 57mpbird 235 . . . . . . . . . . . 12  |-  ( ( ( m  e.  NN0  /\ 
A. y  e. Word  B
( ( # `  y
)  =  m  ->  ch ) )  /\  (
x  e. Word  B  /\  ( # `  x )  =  ( m  + 
1 ) ) )  ->  x  =/=  (/) )
59 lswcl 12702 . . . . . . . . . . . 12  |-  ( ( x  e. Word  B  /\  x  =/=  (/) )  ->  ( lastS  `  x )  e.  B
)
6028, 58, 59syl2anc 665 . . . . . . . . . . 11  |-  ( ( ( m  e.  NN0  /\ 
A. y  e. Word  B
( ( # `  y
)  =  m  ->  ch ) )  /\  (
x  e. Word  B  /\  ( # `  x )  =  ( m  + 
1 ) ) )  ->  ( lastS  `  x )  e.  B )
61 oveq1 6312 . . . . . . . . . . . . . 14  |-  ( y  =  ( x substr  <. 0 ,  ( ( # `  x )  -  1 ) >. )  ->  (
y ++  <" z "> )  =  ( ( x substr  <. 0 ,  ( ( # `  x )  -  1 ) >. ) ++  <" z "> ) )
6261sbceq1d 3310 . . . . . . . . . . . . 13  |-  ( y  =  ( x substr  <. 0 ,  ( ( # `  x )  -  1 ) >. )  ->  ( [. ( y ++  <" z "> )  /  x ]. ph  <->  [. ( ( x substr  <. 0 ,  ( (
# `  x )  -  1 ) >.
) ++  <" z "> )  /  x ]. ph ) )
6350, 62imbi12d 321 . . . . . . . . . . . 12  |-  ( y  =  ( x substr  <. 0 ,  ( ( # `  x )  -  1 ) >. )  ->  (
( [. y  /  x ]. ph  ->  [. ( y ++ 
<" z "> )  /  x ]. ph )  <->  (
[. ( x substr  <. 0 ,  ( ( # `  x )  -  1 ) >. )  /  x ]. ph  ->  [. ( ( x substr  <. 0 ,  ( ( # `  x
)  -  1 )
>. ) ++  <" z "> )  /  x ]. ph ) ) )
64 s1eq 12726 . . . . . . . . . . . . . . 15  |-  ( z  =  ( lastS  `  x
)  ->  <" z ">  =  <" ( lastS  `  x ) "> )
6564oveq2d 6321 . . . . . . . . . . . . . 14  |-  ( z  =  ( lastS  `  x
)  ->  ( (
x substr  <. 0 ,  ( ( # `  x
)  -  1 )
>. ) ++  <" z "> )  =  ( ( x substr  <. 0 ,  ( ( # `  x )  -  1 ) >. ) ++  <" ( lastS  `  x ) "> ) )
6665sbceq1d 3310 . . . . . . . . . . . . 13  |-  ( z  =  ( lastS  `  x
)  ->  ( [. ( ( x substr  <. 0 ,  ( ( # `  x )  -  1 ) >. ) ++  <" z "> )  /  x ]. ph  <->  [. ( ( x substr  <. 0 ,  ( (
# `  x )  -  1 ) >.
) ++  <" ( lastS  `  x
) "> )  /  x ]. ph )
)
6766imbi2d 317 . . . . . . . . . . . 12  |-  ( z  =  ( lastS  `  x
)  ->  ( ( [. ( x substr  <. 0 ,  ( ( # `  x )  -  1 ) >. )  /  x ]. ph  ->  [. ( ( x substr  <. 0 ,  ( ( # `  x
)  -  1 )
>. ) ++  <" z "> )  /  x ]. ph )  <->  ( [. ( x substr  <. 0 ,  ( ( # `  x
)  -  1 )
>. )  /  x ]. ph  ->  [. ( ( x substr  <. 0 ,  ( ( # `  x
)  -  1 )
>. ) ++  <" ( lastS  `  x ) "> )  /  x ]. ph )
) )
68 wrdind.6 . . . . . . . . . . . . 13  |-  ( ( y  e. Word  B  /\  z  e.  B )  ->  ( ch  ->  th )
)
69 ovex 6333 . . . . . . . . . . . . . 14  |-  ( y ++ 
<" z "> )  e.  _V
70 wrdind.3 . . . . . . . . . . . . . 14  |-  ( x  =  ( y ++  <" z "> )  ->  ( ph  <->  th )
)
7169, 70sbcie 3340 . . . . . . . . . . . . 13  |-  ( [. ( y ++  <" z "> )  /  x ]. ph  <->  th )
7268, 49, 713imtr4g 273 . . . . . . . . . . . 12  |-  ( ( y  e. Word  B  /\  z  e.  B )  ->  ( [. y  /  x ]. ph  ->  [. (
y ++  <" z "> )  /  x ]. ph ) )
7363, 67, 72vtocl2ga 3153 . . . . . . . . . . 11  |-  ( ( ( x substr  <. 0 ,  ( ( # `  x )  -  1 ) >. )  e. Word  B  /\  ( lastS  `  x )  e.  B )  -> 
( [. ( x substr  <. 0 ,  ( ( # `  x )  -  1 ) >. )  /  x ]. ph  ->  [. ( ( x substr  <. 0 ,  ( ( # `  x
)  -  1 )
>. ) ++  <" ( lastS  `  x ) "> )  /  x ]. ph )
)
7426, 60, 73syl2anc 665 . . . . . . . . . 10  |-  ( ( ( m  e.  NN0  /\ 
A. y  e. Word  B
( ( # `  y
)  =  m  ->  ch ) )  /\  (
x  e. Word  B  /\  ( # `  x )  =  ( m  + 
1 ) ) )  ->  ( [. (
x substr  <. 0 ,  ( ( # `  x
)  -  1 )
>. )  /  x ]. ph  ->  [. ( ( x substr  <. 0 ,  ( ( # `  x
)  -  1 )
>. ) ++  <" ( lastS  `  x ) "> )  /  x ]. ph )
)
7554, 74mpd 15 . . . . . . . . 9  |-  ( ( ( m  e.  NN0  /\ 
A. y  e. Word  B
( ( # `  y
)  =  m  ->  ch ) )  /\  (
x  e. Word  B  /\  ( # `  x )  =  ( m  + 
1 ) ) )  ->  [. ( ( x substr  <. 0 ,  ( (
# `  x )  -  1 ) >.
) ++  <" ( lastS  `  x
) "> )  /  x ]. ph )
76 wrdfin 12673 . . . . . . . . . . . . . 14  |-  ( x  e. Word  B  ->  x  e.  Fin )
7776ad2antrl 732 . . . . . . . . . . . . 13  |-  ( ( ( m  e.  NN0  /\ 
A. y  e. Word  B
( ( # `  y
)  =  m  ->  ch ) )  /\  (
x  e. Word  B  /\  ( # `  x )  =  ( m  + 
1 ) ) )  ->  x  e.  Fin )
78 hashnncl 12544 . . . . . . . . . . . . 13  |-  ( x  e.  Fin  ->  (
( # `  x )  e.  NN  <->  x  =/=  (/) ) )
7977, 78syl 17 . . . . . . . . . . . 12  |-  ( ( ( m  e.  NN0  /\ 
A. y  e. Word  B
( ( # `  y
)  =  m  ->  ch ) )  /\  (
x  e. Word  B  /\  ( # `  x )  =  ( m  + 
1 ) ) )  ->  ( ( # `  x )  e.  NN  <->  x  =/=  (/) ) )
8033, 79mpbid 213 . . . . . . . . . . 11  |-  ( ( ( m  e.  NN0  /\ 
A. y  e. Word  B
( ( # `  y
)  =  m  ->  ch ) )  /\  (
x  e. Word  B  /\  ( # `  x )  =  ( m  + 
1 ) ) )  ->  x  =/=  (/) )
81 swrdccatwrd 12809 . . . . . . . . . . . 12  |-  ( ( x  e. Word  B  /\  x  =/=  (/) )  ->  (
( x substr  <. 0 ,  ( ( # `  x
)  -  1 )
>. ) ++  <" ( lastS  `  x ) "> )  =  x )
8281eqcomd 2437 . . . . . . . . . . 11  |-  ( ( x  e. Word  B  /\  x  =/=  (/) )  ->  x  =  ( ( x substr  <. 0 ,  ( (
# `  x )  -  1 ) >.
) ++  <" ( lastS  `  x
) "> )
)
8328, 80, 82syl2anc 665 . . . . . . . . . 10  |-  ( ( ( m  e.  NN0  /\ 
A. y  e. Word  B
( ( # `  y
)  =  m  ->  ch ) )  /\  (
x  e. Word  B  /\  ( # `  x )  =  ( m  + 
1 ) ) )  ->  x  =  ( ( x substr  <. 0 ,  ( ( # `  x )  -  1 ) >. ) ++  <" ( lastS  `  x ) "> ) )
84 sbceq1a 3316 . . . . . . . . . 10  |-  ( x  =  ( ( x substr  <. 0 ,  ( (
# `  x )  -  1 ) >.
) ++  <" ( lastS  `  x
) "> )  ->  ( ph  <->  [. ( ( x substr  <. 0 ,  ( ( # `  x
)  -  1 )
>. ) ++  <" ( lastS  `  x ) "> )  /  x ]. ph )
)
8583, 84syl 17 . . . . . . . . 9  |-  ( ( ( m  e.  NN0  /\ 
A. y  e. Word  B
( ( # `  y
)  =  m  ->  ch ) )  /\  (
x  e. Word  B  /\  ( # `  x )  =  ( m  + 
1 ) ) )  ->  ( ph  <->  [. ( ( x substr  <. 0 ,  ( ( # `  x
)  -  1 )
>. ) ++  <" ( lastS  `  x ) "> )  /  x ]. ph )
)
8675, 85mpbird 235 . . . . . . . 8  |-  ( ( ( m  e.  NN0  /\ 
A. y  e. Word  B
( ( # `  y
)  =  m  ->  ch ) )  /\  (
x  e. Word  B  /\  ( # `  x )  =  ( m  + 
1 ) ) )  ->  ph )
8786expr 618 . . . . . . 7  |-  ( ( ( m  e.  NN0  /\ 
A. y  e. Word  B
( ( # `  y
)  =  m  ->  ch ) )  /\  x  e. Word  B )  ->  (
( # `  x )  =  ( m  + 
1 )  ->  ph )
)
8887ralrimiva 2846 . . . . . 6  |-  ( ( m  e.  NN0  /\  A. y  e. Word  B ( ( # `  y
)  =  m  ->  ch ) )  ->  A. x  e. Word  B ( ( # `  x )  =  ( m  +  1 )  ->  ph ) )
8988ex 435 . . . . 5  |-  ( m  e.  NN0  ->  ( A. y  e. Word  B (
( # `  y )  =  m  ->  ch )  ->  A. x  e. Word  B
( ( # `  x
)  =  ( m  +  1 )  ->  ph ) ) )
9024, 89syl5bi 220 . . . 4  |-  ( m  e.  NN0  ->  ( A. x  e. Word  B (
( # `  x )  =  m  ->  ph )  ->  A. x  e. Word  B
( ( # `  x
)  =  ( m  +  1 )  ->  ph ) ) )
914, 7, 10, 13, 19, 90nn0ind 11030 . . 3  |-  ( (
# `  A )  e.  NN0  ->  A. x  e. Word  B ( ( # `  x )  =  (
# `  A )  ->  ph ) )
921, 91syl 17 . 2  |-  ( A  e. Word  B  ->  A. x  e. Word  B ( ( # `  x )  =  (
# `  A )  ->  ph ) )
93 eqidd 2430 . 2  |-  ( A  e. Word  B  ->  ( # `
 A )  =  ( # `  A
) )
94 fveq2 5881 . . . . 5  |-  ( x  =  A  ->  ( # `
 x )  =  ( # `  A
) )
9594eqeq1d 2431 . . . 4  |-  ( x  =  A  ->  (
( # `  x )  =  ( # `  A
)  <->  ( # `  A
)  =  ( # `  A ) ) )
96 wrdind.4 . . . 4  |-  ( x  =  A  ->  ( ph 
<->  ta ) )
9795, 96imbi12d 321 . . 3  |-  ( x  =  A  ->  (
( ( # `  x
)  =  ( # `  A )  ->  ph )  <->  ( ( # `  A
)  =  ( # `  A )  ->  ta ) ) )
9897rspcv 3184 . 2  |-  ( A  e. Word  B  ->  ( A. x  e. Word  B ( ( # `  x
)  =  ( # `  A )  ->  ph )  ->  ( ( # `  A
)  =  ( # `  A )  ->  ta ) ) )
9992, 93, 98mp2d 46 1  |-  ( A  e. Word  B  ->  ta )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1870    =/= wne 2625   A.wral 2782   [.wsbc 3305   (/)c0 3767   <.cop 4008   class class class wbr 4426   ` cfv 5601  (class class class)co 6305   Fincfn 7577   CCcc 9536   0cc0 9538   1c1 9539    + caddc 9541    <_ cle 9675    - cmin 9859   NNcn 10609   NN0cn0 10869   ...cfz 11782  ..^cfzo 11913   #chash 12512  Word cword 12643   lastS clsw 12644   ++ cconcat 12645   <"cs1 12646   substr csubstr 12647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-int 4259  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-om 6707  df-1st 6807  df-2nd 6808  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-1o 7190  df-oadd 7194  df-er 7371  df-en 7578  df-dom 7579  df-sdom 7580  df-fin 7581  df-card 8372  df-cda 8596  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-nn 10610  df-2 10668  df-n0 10870  df-z 10938  df-uz 11160  df-fz 11783  df-fzo 11914  df-hash 12513  df-word 12651  df-lsw 12652  df-concat 12653  df-s1 12654  df-substr 12655
This theorem is referenced by:  frmdgsum  16597  gsumwrev  16968  gsmsymgrfix  17020  efginvrel2  17312  signstfvneq0  29249  signstfvc  29251  mrsubvrs  29948
  Copyright terms: Public domain W3C validator