MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkdvspthlem Structured version   Unicode version

Theorem wlkdvspthlem 24736
Description: Lemma for wlkdvspth 24737. (Contributed by Alexander van der Vekens, 27-Oct-2017.)
Assertion
Ref Expression
wlkdvspthlem  |-  ( ( F  e. Word  dom  E  /\  P : ( 0 ... ( # `  F
) ) -1-1-> V  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )  ->  Fun  `' F )
Distinct variable groups:    k, F    k, E    P, k
Allowed substitution hint:    V( k)

Proof of Theorem wlkdvspthlem
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wrdf 12558 . . . 4  |-  ( F  e. Word  dom  E  ->  F : ( 0..^ (
# `  F )
) --> dom  E )
213ad2ant1 1017 . . 3  |-  ( ( F  e. Word  dom  E  /\  P : ( 0 ... ( # `  F
) ) -1-1-> V  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )  ->  F : ( 0..^ (
# `  F )
) --> dom  E )
3 fveq2 5872 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  x  ->  ( F `  k )  =  ( F `  x ) )
43fveq2d 5876 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  x  ->  ( E `  ( F `  k ) )  =  ( E `  ( F `  x )
) )
5 fveq2 5872 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  x  ->  ( P `  k )  =  ( P `  x ) )
6 oveq1 6303 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  =  x  ->  (
k  +  1 )  =  ( x  + 
1 ) )
76fveq2d 5876 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  x  ->  ( P `  ( k  +  1 ) )  =  ( P `  ( x  +  1
) ) )
85, 7preq12d 4119 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  x  ->  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  =  { ( P `  x ) ,  ( P `  ( x  +  1 ) ) } )
94, 8eqeq12d 2479 . . . . . . . . . . . . . . . . 17  |-  ( k  =  x  ->  (
( E `  ( F `  k )
)  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  <->  ( E `  ( F `  x
) )  =  {
( P `  x
) ,  ( P `
 ( x  + 
1 ) ) } ) )
109rspcva 3208 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ( 0..^ ( # `  F
) )  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )  ->  ( E `  ( F `  x ) )  =  { ( P `  x ) ,  ( P `  ( x  +  1 ) ) } )
11 fveq2 5872 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( k  =  y  ->  ( F `  k )  =  ( F `  y ) )
1211fveq2d 5876 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  =  y  ->  ( E `  ( F `  k ) )  =  ( E `  ( F `  y )
) )
13 fveq2 5872 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( k  =  y  ->  ( P `  k )  =  ( P `  y ) )
14 oveq1 6303 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( k  =  y  ->  (
k  +  1 )  =  ( y  +  1 ) )
1514fveq2d 5876 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( k  =  y  ->  ( P `  ( k  +  1 ) )  =  ( P `  ( y  +  1 ) ) )
1613, 15preq12d 4119 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  =  y  ->  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  =  { ( P `  y ) ,  ( P `  ( y  +  1 ) ) } )
1712, 16eqeq12d 2479 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  =  y  ->  (
( E `  ( F `  k )
)  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  <->  ( E `  ( F `  y
) )  =  {
( P `  y
) ,  ( P `
 ( y  +  1 ) ) } ) )
1817rspcva 3208 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  ( 0..^ ( # `  F
) )  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )  ->  ( E `  ( F `  y ) )  =  { ( P `  y ) ,  ( P `  ( y  +  1 ) ) } )
19 pm3.2 447 . . . . . . . . . . . . . . . . . . 19  |-  ( ( E `  ( F `
 y ) )  =  { ( P `
 y ) ,  ( P `  (
y  +  1 ) ) }  ->  (
( E `  ( F `  x )
)  =  { ( P `  x ) ,  ( P `  ( x  +  1
) ) }  ->  ( ( E `  ( F `  y )
)  =  { ( P `  y ) ,  ( P `  ( y  +  1 ) ) }  /\  ( E `  ( F `
 x ) )  =  { ( P `
 x ) ,  ( P `  (
x  +  1 ) ) } ) ) )
2018, 19syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  ( 0..^ ( # `  F
) )  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )  ->  (
( E `  ( F `  x )
)  =  { ( P `  x ) ,  ( P `  ( x  +  1
) ) }  ->  ( ( E `  ( F `  y )
)  =  { ( P `  y ) ,  ( P `  ( y  +  1 ) ) }  /\  ( E `  ( F `
 x ) )  =  { ( P `
 x ) ,  ( P `  (
x  +  1 ) ) } ) ) )
2120ex 434 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  ( 0..^ (
# `  F )
)  ->  ( A. k  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  ->  ( ( E `  ( F `  x ) )  =  { ( P `  x ) ,  ( P `  ( x  +  1 ) ) }  ->  ( ( E `  ( F `  y ) )  =  { ( P `  y ) ,  ( P `  ( y  +  1 ) ) }  /\  ( E `
 ( F `  x ) )  =  { ( P `  x ) ,  ( P `  ( x  +  1 ) ) } ) ) ) )
2221com3r 79 . . . . . . . . . . . . . . . 16  |-  ( ( E `  ( F `
 x ) )  =  { ( P `
 x ) ,  ( P `  (
x  +  1 ) ) }  ->  (
y  e.  ( 0..^ ( # `  F
) )  ->  ( A. k  e.  (
0..^ ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  ->  ( ( E `  ( F `  y ) )  =  { ( P `  y ) ,  ( P `  ( y  +  1 ) ) }  /\  ( E `
 ( F `  x ) )  =  { ( P `  x ) ,  ( P `  ( x  +  1 ) ) } ) ) ) )
2310, 22syl 16 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ( 0..^ ( # `  F
) )  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )  ->  (
y  e.  ( 0..^ ( # `  F
) )  ->  ( A. k  e.  (
0..^ ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  ->  ( ( E `  ( F `  y ) )  =  { ( P `  y ) ,  ( P `  ( y  +  1 ) ) }  /\  ( E `
 ( F `  x ) )  =  { ( P `  x ) ,  ( P `  ( x  +  1 ) ) } ) ) ) )
2423impancom 440 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ( 0..^ ( # `  F
) )  /\  y  e.  ( 0..^ ( # `  F ) ) )  ->  ( A. k  e.  ( 0..^ ( # `  F ) ) ( E `  ( F `
 k ) )  =  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) }  ->  ( A. k  e.  (
0..^ ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  ->  ( ( E `  ( F `  y ) )  =  { ( P `  y ) ,  ( P `  ( y  +  1 ) ) }  /\  ( E `
 ( F `  x ) )  =  { ( P `  x ) ,  ( P `  ( x  +  1 ) ) } ) ) ) )
2524com3r 79 . . . . . . . . . . . . 13  |-  ( A. k  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  ->  ( (
x  e.  ( 0..^ ( # `  F
) )  /\  y  e.  ( 0..^ ( # `  F ) ) )  ->  ( A. k  e.  ( 0..^ ( # `  F ) ) ( E `  ( F `
 k ) )  =  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) }  ->  (
( E `  ( F `  y )
)  =  { ( P `  y ) ,  ( P `  ( y  +  1 ) ) }  /\  ( E `  ( F `
 x ) )  =  { ( P `
 x ) ,  ( P `  (
x  +  1 ) ) } ) ) ) )
2625pm2.43a 49 . . . . . . . . . . . 12  |-  ( A. k  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  ->  ( (
x  e.  ( 0..^ ( # `  F
) )  /\  y  e.  ( 0..^ ( # `  F ) ) )  ->  ( ( E `
 ( F `  y ) )  =  { ( P `  y ) ,  ( P `  ( y  +  1 ) ) }  /\  ( E `
 ( F `  x ) )  =  { ( P `  x ) ,  ( P `  ( x  +  1 ) ) } ) ) )
2726impcom 430 . . . . . . . . . . 11  |-  ( ( ( x  e.  ( 0..^ ( # `  F
) )  /\  y  e.  ( 0..^ ( # `  F ) ) )  /\  A. k  e.  ( 0..^ ( # `  F ) ) ( E `  ( F `
 k ) )  =  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) } )  -> 
( ( E `  ( F `  y ) )  =  { ( P `  y ) ,  ( P `  ( y  +  1 ) ) }  /\  ( E `  ( F `
 x ) )  =  { ( P `
 x ) ,  ( P `  (
x  +  1 ) ) } ) )
28 fveq2 5872 . . . . . . . . . . . . . 14  |-  ( ( F `  x )  =  ( F `  y )  ->  ( E `  ( F `  x ) )  =  ( E `  ( F `  y )
) )
29 eqtr2 2484 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( E `  ( F `  y )
)  =  ( E `
 ( F `  x ) )  /\  ( E `  ( F `
 y ) )  =  { ( P `
 y ) ,  ( P `  (
y  +  1 ) ) } )  -> 
( E `  ( F `  x )
)  =  { ( P `  y ) ,  ( P `  ( y  +  1 ) ) } )
3029ex 434 . . . . . . . . . . . . . . . . . . 19  |-  ( ( E `  ( F `
 y ) )  =  ( E `  ( F `  x ) )  ->  ( ( E `  ( F `  y ) )  =  { ( P `  y ) ,  ( P `  ( y  +  1 ) ) }  ->  ( E `  ( F `  x
) )  =  {
( P `  y
) ,  ( P `
 ( y  +  1 ) ) } ) )
3130eqcoms 2469 . . . . . . . . . . . . . . . . . 18  |-  ( ( E `  ( F `
 x ) )  =  ( E `  ( F `  y ) )  ->  ( ( E `  ( F `  y ) )  =  { ( P `  y ) ,  ( P `  ( y  +  1 ) ) }  ->  ( E `  ( F `  x
) )  =  {
( P `  y
) ,  ( P `
 ( y  +  1 ) ) } ) )
32 eqtr2 2484 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( E `  ( F `  x )
)  =  { ( P `  y ) ,  ( P `  ( y  +  1 ) ) }  /\  ( E `  ( F `
 x ) )  =  { ( P `
 x ) ,  ( P `  (
x  +  1 ) ) } )  ->  { ( P `  y ) ,  ( P `  ( y  +  1 ) ) }  =  { ( P `  x ) ,  ( P `  ( x  +  1
) ) } )
3332ex 434 . . . . . . . . . . . . . . . . . 18  |-  ( ( E `  ( F `
 x ) )  =  { ( P `
 y ) ,  ( P `  (
y  +  1 ) ) }  ->  (
( E `  ( F `  x )
)  =  { ( P `  x ) ,  ( P `  ( x  +  1
) ) }  ->  { ( P `  y
) ,  ( P `
 ( y  +  1 ) ) }  =  { ( P `
 x ) ,  ( P `  (
x  +  1 ) ) } ) )
3431, 33syl6com 35 . . . . . . . . . . . . . . . . 17  |-  ( ( E `  ( F `
 y ) )  =  { ( P `
 y ) ,  ( P `  (
y  +  1 ) ) }  ->  (
( E `  ( F `  x )
)  =  ( E `
 ( F `  y ) )  -> 
( ( E `  ( F `  x ) )  =  { ( P `  x ) ,  ( P `  ( x  +  1
) ) }  ->  { ( P `  y
) ,  ( P `
 ( y  +  1 ) ) }  =  { ( P `
 x ) ,  ( P `  (
x  +  1 ) ) } ) ) )
3534com23 78 . . . . . . . . . . . . . . . 16  |-  ( ( E `  ( F `
 y ) )  =  { ( P `
 y ) ,  ( P `  (
y  +  1 ) ) }  ->  (
( E `  ( F `  x )
)  =  { ( P `  x ) ,  ( P `  ( x  +  1
) ) }  ->  ( ( E `  ( F `  x )
)  =  ( E `
 ( F `  y ) )  ->  { ( P `  y ) ,  ( P `  ( y  +  1 ) ) }  =  { ( P `  x ) ,  ( P `  ( x  +  1
) ) } ) ) )
3635imp 429 . . . . . . . . . . . . . . 15  |-  ( ( ( E `  ( F `  y )
)  =  { ( P `  y ) ,  ( P `  ( y  +  1 ) ) }  /\  ( E `  ( F `
 x ) )  =  { ( P `
 x ) ,  ( P `  (
x  +  1 ) ) } )  -> 
( ( E `  ( F `  x ) )  =  ( E `
 ( F `  y ) )  ->  { ( P `  y ) ,  ( P `  ( y  +  1 ) ) }  =  { ( P `  x ) ,  ( P `  ( x  +  1
) ) } ) )
37 elfzofz 11841 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( x  e.  ( 0..^ (
# `  F )
)  ->  x  e.  ( 0 ... ( # `
 F ) ) )
38 elfzofz 11841 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( y  e.  ( 0..^ (
# `  F )
)  ->  y  e.  ( 0 ... ( # `
 F ) ) )
3937, 38anim12i 566 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( x  e.  ( 0..^ ( # `  F
) )  /\  y  e.  ( 0..^ ( # `  F ) ) )  ->  ( x  e.  ( 0 ... ( # `
 F ) )  /\  y  e.  ( 0 ... ( # `  F ) ) ) )
4039anim2i 569 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( P : ( 0 ... ( # `  F
) ) -1-1-> V  /\  ( x  e.  (
0..^ ( # `  F
) )  /\  y  e.  ( 0..^ ( # `  F ) ) ) )  ->  ( P : ( 0 ... ( # `  F
) ) -1-1-> V  /\  ( x  e.  (
0 ... ( # `  F
) )  /\  y  e.  ( 0 ... ( # `
 F ) ) ) ) )
4140ancoms 453 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( x  e.  ( 0..^ ( # `  F
) )  /\  y  e.  ( 0..^ ( # `  F ) ) )  /\  P : ( 0 ... ( # `  F ) ) -1-1-> V
)  ->  ( P : ( 0 ... ( # `  F
) ) -1-1-> V  /\  ( x  e.  (
0 ... ( # `  F
) )  /\  y  e.  ( 0 ... ( # `
 F ) ) ) ) )
42 f1fveq 6171 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( P : ( 0 ... ( # `  F
) ) -1-1-> V  /\  ( x  e.  (
0 ... ( # `  F
) )  /\  y  e.  ( 0 ... ( # `
 F ) ) ) )  ->  (
( P `  x
)  =  ( P `
 y )  <->  x  =  y ) )
4341, 42syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( x  e.  ( 0..^ ( # `  F
) )  /\  y  e.  ( 0..^ ( # `  F ) ) )  /\  P : ( 0 ... ( # `  F ) ) -1-1-> V
)  ->  ( ( P `  x )  =  ( P `  y )  <->  x  =  y ) )
4443notbid 294 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( x  e.  ( 0..^ ( # `  F
) )  /\  y  e.  ( 0..^ ( # `  F ) ) )  /\  P : ( 0 ... ( # `  F ) ) -1-1-> V
)  ->  ( -.  ( P `  x )  =  ( P `  y )  <->  -.  x  =  y ) )
4544biimparc 487 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( -.  x  =  y  /\  ( ( x  e.  ( 0..^ (
# `  F )
)  /\  y  e.  ( 0..^ ( # `  F
) ) )  /\  P : ( 0 ... ( # `  F
) ) -1-1-> V ) )  ->  -.  ( P `  x )  =  ( P `  y ) )
46 simpr 461 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( x  e.  ( 0..^ ( # `  F
) )  /\  y  e.  ( 0..^ ( # `  F ) ) )  /\  P : ( 0 ... ( # `  F ) ) -1-1-> V
)  ->  P :
( 0 ... ( # `
 F ) )
-1-1-> V )
47 fzofzp1 11912 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( x  e.  ( 0..^ (
# `  F )
)  ->  ( x  +  1 )  e.  ( 0 ... ( # `
 F ) ) )
48 fzofzp1 11912 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( y  e.  ( 0..^ (
# `  F )
)  ->  ( y  +  1 )  e.  ( 0 ... ( # `
 F ) ) )
4947, 48anim12i 566 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( x  e.  ( 0..^ ( # `  F
) )  /\  y  e.  ( 0..^ ( # `  F ) ) )  ->  ( ( x  +  1 )  e.  ( 0 ... ( # `
 F ) )  /\  ( y  +  1 )  e.  ( 0 ... ( # `  F ) ) ) )
5049adantr 465 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( x  e.  ( 0..^ ( # `  F
) )  /\  y  e.  ( 0..^ ( # `  F ) ) )  /\  P : ( 0 ... ( # `  F ) ) -1-1-> V
)  ->  ( (
x  +  1 )  e.  ( 0 ... ( # `  F
) )  /\  (
y  +  1 )  e.  ( 0 ... ( # `  F
) ) ) )
51 f1fveq 6171 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( P : ( 0 ... ( # `  F
) ) -1-1-> V  /\  ( ( x  + 
1 )  e.  ( 0 ... ( # `  F ) )  /\  ( y  +  1 )  e.  ( 0 ... ( # `  F
) ) ) )  ->  ( ( P `
 ( x  + 
1 ) )  =  ( P `  (
y  +  1 ) )  <->  ( x  + 
1 )  =  ( y  +  1 ) ) )
5246, 50, 51syl2anc 661 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( x  e.  ( 0..^ ( # `  F
) )  /\  y  e.  ( 0..^ ( # `  F ) ) )  /\  P : ( 0 ... ( # `  F ) ) -1-1-> V
)  ->  ( ( P `  ( x  +  1 ) )  =  ( P `  ( y  +  1 ) )  <->  ( x  +  1 )  =  ( y  +  1 ) ) )
53 elfzoelz 11826 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( x  e.  ( 0..^ (
# `  F )
)  ->  x  e.  ZZ )
5453zcnd 10991 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( x  e.  ( 0..^ (
# `  F )
)  ->  x  e.  CC )
5554ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( x  e.  ( 0..^ ( # `  F
) )  /\  y  e.  ( 0..^ ( # `  F ) ) )  /\  P : ( 0 ... ( # `  F ) ) -1-1-> V
)  ->  x  e.  CC )
56 elfzoelz 11826 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( y  e.  ( 0..^ (
# `  F )
)  ->  y  e.  ZZ )
5756zcnd 10991 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( y  e.  ( 0..^ (
# `  F )
)  ->  y  e.  CC )
5857adantl 466 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( x  e.  ( 0..^ ( # `  F
) )  /\  y  e.  ( 0..^ ( # `  F ) ) )  ->  y  e.  CC )
5958adantr 465 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( x  e.  ( 0..^ ( # `  F
) )  /\  y  e.  ( 0..^ ( # `  F ) ) )  /\  P : ( 0 ... ( # `  F ) ) -1-1-> V
)  ->  y  e.  CC )
60 1cnd 9629 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( x  e.  ( 0..^ ( # `  F
) )  /\  y  e.  ( 0..^ ( # `  F ) ) )  /\  P : ( 0 ... ( # `  F ) ) -1-1-> V
)  ->  1  e.  CC )
6155, 59, 60addcan2d 9801 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( x  e.  ( 0..^ ( # `  F
) )  /\  y  e.  ( 0..^ ( # `  F ) ) )  /\  P : ( 0 ... ( # `  F ) ) -1-1-> V
)  ->  ( (
x  +  1 )  =  ( y  +  1 )  <->  x  =  y ) )
6252, 61bitrd 253 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( x  e.  ( 0..^ ( # `  F
) )  /\  y  e.  ( 0..^ ( # `  F ) ) )  /\  P : ( 0 ... ( # `  F ) ) -1-1-> V
)  ->  ( ( P `  ( x  +  1 ) )  =  ( P `  ( y  +  1 ) )  <->  x  =  y ) )
6362notbid 294 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( x  e.  ( 0..^ ( # `  F
) )  /\  y  e.  ( 0..^ ( # `  F ) ) )  /\  P : ( 0 ... ( # `  F ) ) -1-1-> V
)  ->  ( -.  ( P `  ( x  +  1 ) )  =  ( P `  ( y  +  1 ) )  <->  -.  x  =  y ) )
64 pm3.2 447 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( -.  ( P `  (
x  +  1 ) )  =  ( P `
 ( y  +  1 ) )  -> 
( -.  ( P `
 x )  =  ( P `  y
)  ->  ( -.  ( P `  ( x  +  1 ) )  =  ( P `  ( y  +  1 ) )  /\  -.  ( P `  x )  =  ( P `  y ) ) ) )
6563, 64syl6bir 229 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( x  e.  ( 0..^ ( # `  F
) )  /\  y  e.  ( 0..^ ( # `  F ) ) )  /\  P : ( 0 ... ( # `  F ) ) -1-1-> V
)  ->  ( -.  x  =  y  ->  ( -.  ( P `  x )  =  ( P `  y )  ->  ( -.  ( P `  ( x  +  1 ) )  =  ( P `  ( y  +  1 ) )  /\  -.  ( P `  x )  =  ( P `  y ) ) ) ) )
6665com13 80 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( -.  ( P `  x
)  =  ( P `
 y )  -> 
( -.  x  =  y  ->  ( (
( x  e.  ( 0..^ ( # `  F
) )  /\  y  e.  ( 0..^ ( # `  F ) ) )  /\  P : ( 0 ... ( # `  F ) ) -1-1-> V
)  ->  ( -.  ( P `  ( x  +  1 ) )  =  ( P `  ( y  +  1 ) )  /\  -.  ( P `  x )  =  ( P `  y ) ) ) ) )
6745, 66syl 16 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( -.  x  =  y  /\  ( ( x  e.  ( 0..^ (
# `  F )
)  /\  y  e.  ( 0..^ ( # `  F
) ) )  /\  P : ( 0 ... ( # `  F
) ) -1-1-> V ) )  ->  ( -.  x  =  y  ->  ( ( ( x  e.  ( 0..^ ( # `  F ) )  /\  y  e.  ( 0..^ ( # `  F
) ) )  /\  P : ( 0 ... ( # `  F
) ) -1-1-> V )  ->  ( -.  ( P `  ( x  +  1 ) )  =  ( P `  ( y  +  1 ) )  /\  -.  ( P `  x )  =  ( P `  y ) ) ) ) )
68 fvex 5882 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( P `
 y )  e. 
_V
69 fvex 5882 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( P `
 ( y  +  1 ) )  e. 
_V
70 fvex 5882 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( P `
 x )  e. 
_V
71 fvex 5882 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( P `
 ( x  + 
1 ) )  e. 
_V
7268, 69, 70, 71preq12b 4208 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( { ( P `  y
) ,  ( P `
 ( y  +  1 ) ) }  =  { ( P `
 x ) ,  ( P `  (
x  +  1 ) ) }  <->  ( (
( P `  y
)  =  ( P `
 x )  /\  ( P `  ( y  +  1 ) )  =  ( P `  ( x  +  1
) ) )  \/  ( ( P `  y )  =  ( P `  ( x  +  1 ) )  /\  ( P `  ( y  +  1 ) )  =  ( P `  x ) ) ) )
73 pm2.24 109 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( P `  ( x  +  1 ) )  =  ( P `  ( y  +  1 ) )  ->  ( -.  ( P `  (
x  +  1 ) )  =  ( P `
 ( y  +  1 ) )  -> 
( P `  y
)  =  ( P `
 ( x  + 
1 ) ) ) )
7473eqcoms 2469 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( P `  ( y  +  1 ) )  =  ( P `  ( x  +  1
) )  ->  ( -.  ( P `  (
x  +  1 ) )  =  ( P `
 ( y  +  1 ) )  -> 
( P `  y
)  =  ( P `
 ( x  + 
1 ) ) ) )
75 pm2.24 109 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( P `  x )  =  ( P `  y )  ->  ( -.  ( P `  x
)  =  ( P `
 y )  -> 
( P `  (
y  +  1 ) )  =  ( P `
 x ) ) )
7675eqcoms 2469 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( P `  y )  =  ( P `  x )  ->  ( -.  ( P `  x
)  =  ( P `
 y )  -> 
( P `  (
y  +  1 ) )  =  ( P `
 x ) ) )
7774, 76im2anan9r 836 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( P `  y
)  =  ( P `
 x )  /\  ( P `  ( y  +  1 ) )  =  ( P `  ( x  +  1
) ) )  -> 
( ( -.  ( P `  ( x  +  1 ) )  =  ( P `  ( y  +  1 ) )  /\  -.  ( P `  x )  =  ( P `  y ) )  -> 
( ( P `  y )  =  ( P `  ( x  +  1 ) )  /\  ( P `  ( y  +  1 ) )  =  ( P `  x ) ) ) )
78 ax-1 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( P `  y
)  =  ( P `
 ( x  + 
1 ) )  /\  ( P `  ( y  +  1 ) )  =  ( P `  x ) )  -> 
( ( -.  ( P `  ( x  +  1 ) )  =  ( P `  ( y  +  1 ) )  /\  -.  ( P `  x )  =  ( P `  y ) )  -> 
( ( P `  y )  =  ( P `  ( x  +  1 ) )  /\  ( P `  ( y  +  1 ) )  =  ( P `  x ) ) ) )
7977, 78jaoi 379 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( P `  y )  =  ( P `  x )  /\  ( P `  ( y  +  1 ) )  =  ( P `  ( x  +  1 ) ) )  \/  ( ( P `  y )  =  ( P `  ( x  +  1
) )  /\  ( P `  ( y  +  1 ) )  =  ( P `  x ) ) )  ->  ( ( -.  ( P `  (
x  +  1 ) )  =  ( P `
 ( y  +  1 ) )  /\  -.  ( P `  x
)  =  ( P `
 y ) )  ->  ( ( P `
 y )  =  ( P `  (
x  +  1 ) )  /\  ( P `
 ( y  +  1 ) )  =  ( P `  x
) ) ) )
8072, 79sylbi 195 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( { ( P `  y
) ,  ( P `
 ( y  +  1 ) ) }  =  { ( P `
 x ) ,  ( P `  (
x  +  1 ) ) }  ->  (
( -.  ( P `
 ( x  + 
1 ) )  =  ( P `  (
y  +  1 ) )  /\  -.  ( P `  x )  =  ( P `  y ) )  -> 
( ( P `  y )  =  ( P `  ( x  +  1 ) )  /\  ( P `  ( y  +  1 ) )  =  ( P `  x ) ) ) )
8137, 48anim12ci 567 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( x  e.  ( 0..^ ( # `  F
) )  /\  y  e.  ( 0..^ ( # `  F ) ) )  ->  ( ( y  +  1 )  e.  ( 0 ... ( # `
 F ) )  /\  x  e.  ( 0 ... ( # `  F ) ) ) )
82 f1fveq 6171 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( P : ( 0 ... ( # `  F
) ) -1-1-> V  /\  ( ( y  +  1 )  e.  ( 0 ... ( # `  F ) )  /\  x  e.  ( 0 ... ( # `  F
) ) ) )  ->  ( ( P `
 ( y  +  1 ) )  =  ( P `  x
)  <->  ( y  +  1 )  =  x ) )
8381, 82sylan2 474 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( P : ( 0 ... ( # `  F
) ) -1-1-> V  /\  ( x  e.  (
0..^ ( # `  F
) )  /\  y  e.  ( 0..^ ( # `  F ) ) ) )  ->  ( ( P `  ( y  +  1 ) )  =  ( P `  x )  <->  ( y  +  1 )  =  x ) )
8483biimpd 207 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( P : ( 0 ... ( # `  F
) ) -1-1-> V  /\  ( x  e.  (
0..^ ( # `  F
) )  /\  y  e.  ( 0..^ ( # `  F ) ) ) )  ->  ( ( P `  ( y  +  1 ) )  =  ( P `  x )  ->  (
y  +  1 )  =  x ) )
8584ancoms 453 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( x  e.  ( 0..^ ( # `  F
) )  /\  y  e.  ( 0..^ ( # `  F ) ) )  /\  P : ( 0 ... ( # `  F ) ) -1-1-> V
)  ->  ( ( P `  ( y  +  1 ) )  =  ( P `  x )  ->  (
y  +  1 )  =  x ) )
8647, 38anim12ci 567 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( ( x  e.  ( 0..^ ( # `  F
) )  /\  y  e.  ( 0..^ ( # `  F ) ) )  ->  ( y  e.  ( 0 ... ( # `
 F ) )  /\  ( x  + 
1 )  e.  ( 0 ... ( # `  F ) ) ) )
87 f1fveq 6171 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( ( P : ( 0 ... ( # `  F
) ) -1-1-> V  /\  ( y  e.  ( 0 ... ( # `  F ) )  /\  ( x  +  1
)  e.  ( 0 ... ( # `  F
) ) ) )  ->  ( ( P `
 y )  =  ( P `  (
x  +  1 ) )  <->  y  =  ( x  +  1 ) ) )
8886, 87sylan2 474 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( ( P : ( 0 ... ( # `  F
) ) -1-1-> V  /\  ( x  e.  (
0..^ ( # `  F
) )  /\  y  e.  ( 0..^ ( # `  F ) ) ) )  ->  ( ( P `  y )  =  ( P `  ( x  +  1
) )  <->  y  =  ( x  +  1
) ) )
8988ancoms 453 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( ( x  e.  ( 0..^ ( # `  F
) )  /\  y  e.  ( 0..^ ( # `  F ) ) )  /\  P : ( 0 ... ( # `  F ) ) -1-1-> V
)  ->  ( ( P `  y )  =  ( P `  ( x  +  1
) )  <->  y  =  ( x  +  1
) ) )
9089biimpa 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( ( ( x  e.  ( 0..^ ( # `  F ) )  /\  y  e.  ( 0..^ ( # `  F
) ) )  /\  P : ( 0 ... ( # `  F
) ) -1-1-> V )  /\  ( P `  y )  =  ( P `  ( x  +  1 ) ) )  ->  y  =  ( x  +  1
) )
91 oveq1 6303 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  |-  ( y  =  ( x  + 
1 )  ->  (
y  +  1 )  =  ( ( x  +  1 )  +  1 ) )
9291eqeq1d 2459 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( y  =  ( x  + 
1 )  ->  (
( y  +  1 )  =  x  <->  ( (
x  +  1 )  +  1 )  =  x ) )
9392adantl 466 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( ( ( x  e.  ( 0..^ ( # `  F
) )  /\  y  e.  ( 0..^ ( # `  F ) ) )  /\  y  =  ( x  +  1 ) )  ->  ( (
y  +  1 )  =  x  <->  ( (
x  +  1 )  +  1 )  =  x ) )
94 1cnd 9629 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  |-  ( x  e.  ( 0..^ (
# `  F )
)  ->  1  e.  CC )
9554, 94, 943jca 1176 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  |-  ( x  e.  ( 0..^ (
# `  F )
)  ->  ( x  e.  CC  /\  1  e.  CC  /\  1  e.  CC ) )
9695ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( ( ( x  e.  ( 0..^ ( # `  F
) )  /\  y  e.  ( 0..^ ( # `  F ) ) )  /\  y  =  ( x  +  1 ) )  ->  ( x  e.  CC  /\  1  e.  CC  /\  1  e.  CC ) )
97 addass 9596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  |-  ( ( x  e.  CC  /\  1  e.  CC  /\  1  e.  CC )  ->  (
( x  +  1 )  +  1 )  =  ( x  +  ( 1  +  1 ) ) )
9897eqeq1d 2459 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( ( x  e.  CC  /\  1  e.  CC  /\  1  e.  CC )  ->  (
( ( x  + 
1 )  +  1 )  =  x  <->  ( x  +  ( 1  +  1 ) )  =  x ) )
9996, 98syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( ( ( x  e.  ( 0..^ ( # `  F
) )  /\  y  e.  ( 0..^ ( # `  F ) ) )  /\  y  =  ( x  +  1 ) )  ->  ( (
( x  +  1 )  +  1 )  =  x  <->  ( x  +  ( 1  +  1 ) )  =  x ) )
100 1p1e2 10670 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  |-  ( 1  +  1 )  =  2
101100oveq2i 6307 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  |-  ( x  +  ( 1  +  1 ) )  =  ( x  +  2 )
102101eqeq1i 2464 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  |-  ( ( x  +  ( 1  +  1 ) )  =  x  <->  ( x  +  2 )  =  x )
103 zcn 10890 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  |-  ( x  e.  ZZ  ->  x  e.  CC )
104 2cn 10627 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  |-  2  e.  CC
105103, 104jctir 538 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  |-  ( x  e.  ZZ  ->  (
x  e.  CC  /\  2  e.  CC )
)
106 addcl 9591 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  |-  ( ( x  e.  CC  /\  2  e.  CC )  ->  ( x  +  2 )  e.  CC )
107105, 106syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  |-  ( x  e.  ZZ  ->  (
x  +  2 )  e.  CC )
108107, 103, 1033jca 1176 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  |-  ( x  e.  ZZ  ->  (
( x  +  2 )  e.  CC  /\  x  e.  CC  /\  x  e.  CC ) )
109 subcan2 9863 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  |-  ( ( ( x  +  2 )  e.  CC  /\  x  e.  CC  /\  x  e.  CC )  ->  (
( ( x  + 
2 )  -  x
)  =  ( x  -  x )  <->  ( x  +  2 )  =  x ) )
110109bicomd 201 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  |-  ( ( ( x  +  2 )  e.  CC  /\  x  e.  CC  /\  x  e.  CC )  ->  (
( x  +  2 )  =  x  <->  ( (
x  +  2 )  -  x )  =  ( x  -  x
) ) )
11153, 108, 1103syl 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  |-  ( x  e.  ( 0..^ (
# `  F )
)  ->  ( (
x  +  2 )  =  x  <->  ( (
x  +  2 )  -  x )  =  ( x  -  x
) ) )
112 pncan2 9846 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  |-  ( ( x  e.  CC  /\  2  e.  CC )  ->  ( ( x  + 
2 )  -  x
)  =  2 )
11353, 105, 1123syl 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  |-  ( x  e.  ( 0..^ (
# `  F )
)  ->  ( (
x  +  2 )  -  x )  =  2 )
11454subidd 9938 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  |-  ( x  e.  ( 0..^ (
# `  F )
)  ->  ( x  -  x )  =  0 )
115113, 114eqeq12d 2479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  |-  ( x  e.  ( 0..^ (
# `  F )
)  ->  ( (
( x  +  2 )  -  x )  =  ( x  -  x )  <->  2  = 
0 ) )
116111, 115bitrd 253 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  |-  ( x  e.  ( 0..^ (
# `  F )
)  ->  ( (
x  +  2 )  =  x  <->  2  = 
0 ) )
117102, 116syl5bb 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( x  e.  ( 0..^ (
# `  F )
)  ->  ( (
x  +  ( 1  +  1 ) )  =  x  <->  2  = 
0 ) )
118117ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( ( ( x  e.  ( 0..^ ( # `  F
) )  /\  y  e.  ( 0..^ ( # `  F ) ) )  /\  y  =  ( x  +  1 ) )  ->  ( (
x  +  ( 1  +  1 ) )  =  x  <->  2  = 
0 ) )
11993, 99, 1183bitrd 279 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( ( ( x  e.  ( 0..^ ( # `  F
) )  /\  y  e.  ( 0..^ ( # `  F ) ) )  /\  y  =  ( x  +  1 ) )  ->  ( (
y  +  1 )  =  x  <->  2  = 
0 ) )
120 2ne0 10649 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  2  =/=  0
121 df-ne 2654 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( 2  =/=  0  <->  -.  2  =  0 )
122 pm2.21 108 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( -.  2  =  0  -> 
( 2  =  0  ->  x  =  y ) )
123121, 122sylbi 195 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( 2  =/=  0  ->  (
2  =  0  ->  x  =  y )
)
124120, 123ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( 2  =  0  ->  x  =  y )
125119, 124syl6bi 228 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( ( ( x  e.  ( 0..^ ( # `  F
) )  /\  y  e.  ( 0..^ ( # `  F ) ) )  /\  y  =  ( x  +  1 ) )  ->  ( (
y  +  1 )  =  x  ->  x  =  y ) )
126125ex 434 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( x  e.  ( 0..^ ( # `  F
) )  /\  y  e.  ( 0..^ ( # `  F ) ) )  ->  ( y  =  ( x  +  1 )  ->  ( (
y  +  1 )  =  x  ->  x  =  y ) ) )
127126ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( ( ( x  e.  ( 0..^ ( # `  F ) )  /\  y  e.  ( 0..^ ( # `  F
) ) )  /\  P : ( 0 ... ( # `  F
) ) -1-1-> V )  /\  ( P `  y )  =  ( P `  ( x  +  1 ) ) )  ->  ( y  =  ( x  + 
1 )  ->  (
( y  +  1 )  =  x  ->  x  =  y )
) )
12890, 127mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( ( ( x  e.  ( 0..^ ( # `  F ) )  /\  y  e.  ( 0..^ ( # `  F
) ) )  /\  P : ( 0 ... ( # `  F
) ) -1-1-> V )  /\  ( P `  y )  =  ( P `  ( x  +  1 ) ) )  ->  ( (
y  +  1 )  =  x  ->  x  =  y ) )
129128expcom 435 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( P `  y )  =  ( P `  ( x  +  1
) )  ->  (
( ( x  e.  ( 0..^ ( # `  F ) )  /\  y  e.  ( 0..^ ( # `  F
) ) )  /\  P : ( 0 ... ( # `  F
) ) -1-1-> V )  ->  ( ( y  +  1 )  =  x  ->  x  =  y ) ) )
130129com13 80 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( y  +  1 )  =  x  ->  (
( ( x  e.  ( 0..^ ( # `  F ) )  /\  y  e.  ( 0..^ ( # `  F
) ) )  /\  P : ( 0 ... ( # `  F
) ) -1-1-> V )  ->  ( ( P `
 y )  =  ( P `  (
x  +  1 ) )  ->  x  =  y ) ) )
13185, 130syl6 33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( x  e.  ( 0..^ ( # `  F
) )  /\  y  e.  ( 0..^ ( # `  F ) ) )  /\  P : ( 0 ... ( # `  F ) ) -1-1-> V
)  ->  ( ( P `  ( y  +  1 ) )  =  ( P `  x )  ->  (
( ( x  e.  ( 0..^ ( # `  F ) )  /\  y  e.  ( 0..^ ( # `  F
) ) )  /\  P : ( 0 ... ( # `  F
) ) -1-1-> V )  ->  ( ( P `
 y )  =  ( P `  (
x  +  1 ) )  ->  x  =  y ) ) ) )
132131pm2.43a 49 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( x  e.  ( 0..^ ( # `  F
) )  /\  y  e.  ( 0..^ ( # `  F ) ) )  /\  P : ( 0 ... ( # `  F ) ) -1-1-> V
)  ->  ( ( P `  ( y  +  1 ) )  =  ( P `  x )  ->  (
( P `  y
)  =  ( P `
 ( x  + 
1 ) )  ->  x  =  y )
) )
133132com13 80 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( P `  y )  =  ( P `  ( x  +  1
) )  ->  (
( P `  (
y  +  1 ) )  =  ( P `
 x )  -> 
( ( ( x  e.  ( 0..^ (
# `  F )
)  /\  y  e.  ( 0..^ ( # `  F
) ) )  /\  P : ( 0 ... ( # `  F
) ) -1-1-> V )  ->  x  =  y ) ) )
134133imp 429 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( P `  y
)  =  ( P `
 ( x  + 
1 ) )  /\  ( P `  ( y  +  1 ) )  =  ( P `  x ) )  -> 
( ( ( x  e.  ( 0..^ (
# `  F )
)  /\  y  e.  ( 0..^ ( # `  F
) ) )  /\  P : ( 0 ... ( # `  F
) ) -1-1-> V )  ->  x  =  y ) )
13580, 134syl6com 35 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( -.  ( P `  ( x  +  1
) )  =  ( P `  ( y  +  1 ) )  /\  -.  ( P `
 x )  =  ( P `  y
) )  ->  ( { ( P `  y ) ,  ( P `  ( y  +  1 ) ) }  =  { ( P `  x ) ,  ( P `  ( x  +  1
) ) }  ->  ( ( ( x  e.  ( 0..^ ( # `  F ) )  /\  y  e.  ( 0..^ ( # `  F
) ) )  /\  P : ( 0 ... ( # `  F
) ) -1-1-> V )  ->  x  =  y ) ) )
136135com23 78 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( -.  ( P `  ( x  +  1
) )  =  ( P `  ( y  +  1 ) )  /\  -.  ( P `
 x )  =  ( P `  y
) )  ->  (
( ( x  e.  ( 0..^ ( # `  F ) )  /\  y  e.  ( 0..^ ( # `  F
) ) )  /\  P : ( 0 ... ( # `  F
) ) -1-1-> V )  ->  ( { ( P `  y ) ,  ( P `  ( y  +  1 ) ) }  =  { ( P `  x ) ,  ( P `  ( x  +  1 ) ) }  ->  x  =  y ) ) )
13767, 136syl8 70 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( -.  x  =  y  /\  ( ( x  e.  ( 0..^ (
# `  F )
)  /\  y  e.  ( 0..^ ( # `  F
) ) )  /\  P : ( 0 ... ( # `  F
) ) -1-1-> V ) )  ->  ( -.  x  =  y  ->  ( ( ( x  e.  ( 0..^ ( # `  F ) )  /\  y  e.  ( 0..^ ( # `  F
) ) )  /\  P : ( 0 ... ( # `  F
) ) -1-1-> V )  ->  ( ( ( x  e.  ( 0..^ ( # `  F
) )  /\  y  e.  ( 0..^ ( # `  F ) ) )  /\  P : ( 0 ... ( # `  F ) ) -1-1-> V
)  ->  ( {
( P `  y
) ,  ( P `
 ( y  +  1 ) ) }  =  { ( P `
 x ) ,  ( P `  (
x  +  1 ) ) }  ->  x  =  y ) ) ) ) )
138137ex 434 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( -.  x  =  y  -> 
( ( ( x  e.  ( 0..^ (
# `  F )
)  /\  y  e.  ( 0..^ ( # `  F
) ) )  /\  P : ( 0 ... ( # `  F
) ) -1-1-> V )  ->  ( -.  x  =  y  ->  ( ( ( x  e.  ( 0..^ ( # `  F
) )  /\  y  e.  ( 0..^ ( # `  F ) ) )  /\  P : ( 0 ... ( # `  F ) ) -1-1-> V
)  ->  ( (
( x  e.  ( 0..^ ( # `  F
) )  /\  y  e.  ( 0..^ ( # `  F ) ) )  /\  P : ( 0 ... ( # `  F ) ) -1-1-> V
)  ->  ( {
( P `  y
) ,  ( P `
 ( y  +  1 ) ) }  =  { ( P `
 x ) ,  ( P `  (
x  +  1 ) ) }  ->  x  =  y ) ) ) ) ) )
139138pm2.43a 49 . . . . . . . . . . . . . . . . . . . . 21  |-  ( -.  x  =  y  -> 
( ( ( x  e.  ( 0..^ (
# `  F )
)  /\  y  e.  ( 0..^ ( # `  F
) ) )  /\  P : ( 0 ... ( # `  F
) ) -1-1-> V )  ->  ( ( ( x  e.  ( 0..^ ( # `  F
) )  /\  y  e.  ( 0..^ ( # `  F ) ) )  /\  P : ( 0 ... ( # `  F ) ) -1-1-> V
)  ->  ( (
( x  e.  ( 0..^ ( # `  F
) )  /\  y  e.  ( 0..^ ( # `  F ) ) )  /\  P : ( 0 ... ( # `  F ) ) -1-1-> V
)  ->  ( {
( P `  y
) ,  ( P `
 ( y  +  1 ) ) }  =  { ( P `
 x ) ,  ( P `  (
x  +  1 ) ) }  ->  x  =  y ) ) ) ) )
140139com14 88 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( x  e.  ( 0..^ ( # `  F
) )  /\  y  e.  ( 0..^ ( # `  F ) ) )  /\  P : ( 0 ... ( # `  F ) ) -1-1-> V
)  ->  ( (
( x  e.  ( 0..^ ( # `  F
) )  /\  y  e.  ( 0..^ ( # `  F ) ) )  /\  P : ( 0 ... ( # `  F ) ) -1-1-> V
)  ->  ( (
( x  e.  ( 0..^ ( # `  F
) )  /\  y  e.  ( 0..^ ( # `  F ) ) )  /\  P : ( 0 ... ( # `  F ) ) -1-1-> V
)  ->  ( -.  x  =  y  ->  ( { ( P `  y ) ,  ( P `  ( y  +  1 ) ) }  =  { ( P `  x ) ,  ( P `  ( x  +  1
) ) }  ->  x  =  y ) ) ) ) )
141140pm2.43a 49 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( x  e.  ( 0..^ ( # `  F
) )  /\  y  e.  ( 0..^ ( # `  F ) ) )  /\  P : ( 0 ... ( # `  F ) ) -1-1-> V
)  ->  ( (
( x  e.  ( 0..^ ( # `  F
) )  /\  y  e.  ( 0..^ ( # `  F ) ) )  /\  P : ( 0 ... ( # `  F ) ) -1-1-> V
)  ->  ( -.  x  =  y  ->  ( { ( P `  y ) ,  ( P `  ( y  +  1 ) ) }  =  { ( P `  x ) ,  ( P `  ( x  +  1
) ) }  ->  x  =  y ) ) ) )
142141pm2.43i 47 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( x  e.  ( 0..^ ( # `  F
) )  /\  y  e.  ( 0..^ ( # `  F ) ) )  /\  P : ( 0 ... ( # `  F ) ) -1-1-> V
)  ->  ( -.  x  =  y  ->  ( { ( P `  y ) ,  ( P `  ( y  +  1 ) ) }  =  { ( P `  x ) ,  ( P `  ( x  +  1
) ) }  ->  x  =  y ) ) )
143142ex 434 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  ( 0..^ ( # `  F
) )  /\  y  e.  ( 0..^ ( # `  F ) ) )  ->  ( P :
( 0 ... ( # `
 F ) )
-1-1-> V  ->  ( -.  x  =  y  ->  ( { ( P `  y ) ,  ( P `  ( y  +  1 ) ) }  =  { ( P `  x ) ,  ( P `  ( x  +  1
) ) }  ->  x  =  y ) ) ) )
144143com23 78 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ( 0..^ ( # `  F
) )  /\  y  e.  ( 0..^ ( # `  F ) ) )  ->  ( -.  x  =  y  ->  ( P : ( 0 ... ( # `  F
) ) -1-1-> V  -> 
( { ( P `
 y ) ,  ( P `  (
y  +  1 ) ) }  =  {
( P `  x
) ,  ( P `
 ( x  + 
1 ) ) }  ->  x  =  y ) ) ) )
145144com14 88 . . . . . . . . . . . . . . 15  |-  ( { ( P `  y
) ,  ( P `
 ( y  +  1 ) ) }  =  { ( P `
 x ) ,  ( P `  (
x  +  1 ) ) }  ->  ( -.  x  =  y  ->  ( P : ( 0 ... ( # `  F ) ) -1-1-> V  ->  ( ( x  e.  ( 0..^ ( # `  F ) )  /\  y  e.  ( 0..^ ( # `  F
) ) )  ->  x  =  y )
) ) )
14636, 145syl6com 35 . . . . . . . . . . . . . 14  |-  ( ( E `  ( F `
 x ) )  =  ( E `  ( F `  y ) )  ->  ( (
( E `  ( F `  y )
)  =  { ( P `  y ) ,  ( P `  ( y  +  1 ) ) }  /\  ( E `  ( F `
 x ) )  =  { ( P `
 x ) ,  ( P `  (
x  +  1 ) ) } )  -> 
( -.  x  =  y  ->  ( P : ( 0 ... ( # `  F
) ) -1-1-> V  -> 
( ( x  e.  ( 0..^ ( # `  F ) )  /\  y  e.  ( 0..^ ( # `  F
) ) )  ->  x  =  y )
) ) ) )
14728, 146syl 16 . . . . . . . . . . . . 13  |-  ( ( F `  x )  =  ( F `  y )  ->  (
( ( E `  ( F `  y ) )  =  { ( P `  y ) ,  ( P `  ( y  +  1 ) ) }  /\  ( E `  ( F `
 x ) )  =  { ( P `
 x ) ,  ( P `  (
x  +  1 ) ) } )  -> 
( -.  x  =  y  ->  ( P : ( 0 ... ( # `  F
) ) -1-1-> V  -> 
( ( x  e.  ( 0..^ ( # `  F ) )  /\  y  e.  ( 0..^ ( # `  F
) ) )  ->  x  =  y )
) ) ) )
148147com15 93 . . . . . . . . . . . 12  |-  ( ( x  e.  ( 0..^ ( # `  F
) )  /\  y  e.  ( 0..^ ( # `  F ) ) )  ->  ( ( ( E `  ( F `
 y ) )  =  { ( P `
 y ) ,  ( P `  (
y  +  1 ) ) }  /\  ( E `  ( F `  x ) )  =  { ( P `  x ) ,  ( P `  ( x  +  1 ) ) } )  ->  ( -.  x  =  y  ->  ( P : ( 0 ... ( # `  F ) ) -1-1-> V  ->  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) ) ) ) )
149148adantr 465 . . . . . . . . . . 11  |-  ( ( ( x  e.  ( 0..^ ( # `  F
) )  /\  y  e.  ( 0..^ ( # `  F ) ) )  /\  A. k  e.  ( 0..^ ( # `  F ) ) ( E `  ( F `
 k ) )  =  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) } )  -> 
( ( ( E `
 ( F `  y ) )  =  { ( P `  y ) ,  ( P `  ( y  +  1 ) ) }  /\  ( E `
 ( F `  x ) )  =  { ( P `  x ) ,  ( P `  ( x  +  1 ) ) } )  ->  ( -.  x  =  y  ->  ( P : ( 0 ... ( # `  F ) ) -1-1-> V  ->  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) ) ) ) )
15027, 149mpd 15 . . . . . . . . . 10  |-  ( ( ( x  e.  ( 0..^ ( # `  F
) )  /\  y  e.  ( 0..^ ( # `  F ) ) )  /\  A. k  e.  ( 0..^ ( # `  F ) ) ( E `  ( F `
 k ) )  =  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) } )  -> 
( -.  x  =  y  ->  ( P : ( 0 ... ( # `  F
) ) -1-1-> V  -> 
( ( F `  x )  =  ( F `  y )  ->  x  =  y ) ) ) )
151150ex 434 . . . . . . . . 9  |-  ( ( x  e.  ( 0..^ ( # `  F
) )  /\  y  e.  ( 0..^ ( # `  F ) ) )  ->  ( A. k  e.  ( 0..^ ( # `  F ) ) ( E `  ( F `
 k ) )  =  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) }  ->  ( -.  x  =  y  ->  ( P : ( 0 ... ( # `  F ) ) -1-1-> V  ->  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) ) ) ) )
152151com14 88 . . . . . . . 8  |-  ( P : ( 0 ... ( # `  F
) ) -1-1-> V  -> 
( A. k  e.  ( 0..^ ( # `  F ) ) ( E `  ( F `
 k ) )  =  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) }  ->  ( -.  x  =  y  ->  ( ( x  e.  ( 0..^ ( # `  F ) )  /\  y  e.  ( 0..^ ( # `  F
) ) )  -> 
( ( F `  x )  =  ( F `  y )  ->  x  =  y ) ) ) ) )
153152a1i 11 . . . . . . 7  |-  ( F : ( 0..^ (
# `  F )
) --> dom  E  ->  ( P : ( 0 ... ( # `  F
) ) -1-1-> V  -> 
( A. k  e.  ( 0..^ ( # `  F ) ) ( E `  ( F `
 k ) )  =  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) }  ->  ( -.  x  =  y  ->  ( ( x  e.  ( 0..^ ( # `  F ) )  /\  y  e.  ( 0..^ ( # `  F
) ) )  -> 
( ( F `  x )  =  ( F `  y )  ->  x  =  y ) ) ) ) ) )
1541533imp 1190 . . . . . 6  |-  ( ( F : ( 0..^ ( # `  F
) ) --> dom  E  /\  P : ( 0 ... ( # `  F
) ) -1-1-> V  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )  ->  ( -.  x  =  y  ->  ( ( x  e.  ( 0..^ ( # `  F ) )  /\  y  e.  ( 0..^ ( # `  F
) ) )  -> 
( ( F `  x )  =  ( F `  y )  ->  x  =  y ) ) ) )
155 ax-1 6 . . . . . . 7  |-  ( x  =  y  ->  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
)
156155a1d 25 . . . . . 6  |-  ( x  =  y  ->  (
( x  e.  ( 0..^ ( # `  F
) )  /\  y  e.  ( 0..^ ( # `  F ) ) )  ->  ( ( F `
 x )  =  ( F `  y
)  ->  x  =  y ) ) )
157154, 156pm2.61d2 160 . . . . 5  |-  ( ( F : ( 0..^ ( # `  F
) ) --> dom  E  /\  P : ( 0 ... ( # `  F
) ) -1-1-> V  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )  ->  (
( x  e.  ( 0..^ ( # `  F
) )  /\  y  e.  ( 0..^ ( # `  F ) ) )  ->  ( ( F `
 x )  =  ( F `  y
)  ->  x  =  y ) ) )
158157ralrimivv 2877 . . . 4  |-  ( ( F : ( 0..^ ( # `  F
) ) --> dom  E  /\  P : ( 0 ... ( # `  F
) ) -1-1-> V  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )  ->  A. x  e.  ( 0..^ ( # `  F ) ) A. y  e.  ( 0..^ ( # `  F
) ) ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) )
1591, 158syl3an1 1261 . . 3  |-  ( ( F  e. Word  dom  E  /\  P : ( 0 ... ( # `  F
) ) -1-1-> V  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )  ->  A. x  e.  ( 0..^ ( # `  F ) ) A. y  e.  ( 0..^ ( # `  F
) ) ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) )
160 dff13 6167 . . 3  |-  ( F : ( 0..^ (
# `  F )
) -1-1-> dom  E  <->  ( F : ( 0..^ (
# `  F )
) --> dom  E  /\  A. x  e.  ( 0..^ ( # `  F
) ) A. y  e.  ( 0..^ ( # `  F ) ) ( ( F `  x
)  =  ( F `
 y )  ->  x  =  y )
) )
1612, 159, 160sylanbrc 664 . 2  |-  ( ( F  e. Word  dom  E  /\  P : ( 0 ... ( # `  F
) ) -1-1-> V  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )  ->  F : ( 0..^ (
# `  F )
) -1-1-> dom  E )
1622biantrurd 508 . . 3  |-  ( ( F  e. Word  dom  E  /\  P : ( 0 ... ( # `  F
) ) -1-1-> V  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )  ->  ( Fun  `' F  <->  ( F :
( 0..^ ( # `  F ) ) --> dom 
E  /\  Fun  `' F
) ) )
163 df-f1 5599 . . 3  |-  ( F : ( 0..^ (
# `  F )
) -1-1-> dom  E  <->  ( F : ( 0..^ (
# `  F )
) --> dom  E  /\  Fun  `' F ) )
164162, 163syl6bbr 263 . 2  |-  ( ( F  e. Word  dom  E  /\  P : ( 0 ... ( # `  F
) ) -1-1-> V  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )  ->  ( Fun  `' F  <->  F : ( 0..^ ( # `  F
) ) -1-1-> dom  E
) )
165161, 164mpbird 232 1  |-  ( ( F  e. Word  dom  E  /\  P : ( 0 ... ( # `  F
) ) -1-1-> V  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )  ->  Fun  `' F )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 973    = wceq 1395    e. wcel 1819    =/= wne 2652   A.wral 2807   {cpr 4034   `'ccnv 5007   dom cdm 5008   Fun wfun 5588   -->wf 5590   -1-1->wf1 5591   ` cfv 5594  (class class class)co 6296   CCcc 9507   0cc0 9509   1c1 9510    + caddc 9512    - cmin 9824   2c2 10606   ZZcz 10885   ...cfz 11697  ..^cfzo 11821   #chash 12408  Word cword 12538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-1o 7148  df-oadd 7152  df-er 7329  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-card 8337  df-cda 8565  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-nn 10557  df-2 10615  df-n0 10817  df-z 10886  df-uz 11107  df-fz 11698  df-fzo 11822  df-hash 12409  df-word 12546
This theorem is referenced by:  wlkdvspth  24737
  Copyright terms: Public domain W3C validator